Addition and Double Angle Formulae

Addition and Double Angle Formulae

A LevelAQAEdexcelOCRAQA 2022Edexcel 2022OCR 2022

Addition and Double Angle Formulae

We’re now about to take a look at some formulae which describe angle addition.

If you don’t know your key trig values already, now would be the time to learn!

Make sure you are happy with the following topics before continuing.

A Level AQA Edexcel OCR

Finding Expressions for Addition Formulae

Here’s three new formulae in \textcolor{blue}{\sin}, \textcolor{limegreen}{\cos} and \textcolor{red}{\tan}:

\textcolor{blue}{\sin} (\textcolor{purple}{A} ± \textcolor{orange}{B}) = \textcolor{blue}{\sin} \textcolor{purple}{A} \textcolor{limegreen}{\cos} \textcolor{orange}{B} ± \textcolor{blue}{\sin} \textcolor{orange}{B} \textcolor{limegreen}{\cos} \textcolor{purple}{A}

\textcolor{limegreen}{\cos} (\textcolor{purple}{A} ± \textcolor{orange}{B}) = \textcolor{limegreen}{\cos} \textcolor{purple}{A} \textcolor{limegreen}{\cos} \textcolor{orange}{B} \mp \textcolor{blue}{\sin} \textcolor{purple}{A} \textcolor{blue}{\sin} \textcolor{orange}{B}

\textcolor{red}{\tan} (\textcolor{purple}{A} ± \textcolor{orange}{B}) = \dfrac{\textcolor{red}{\tan} \textcolor{purple}{A} ± \textcolor{red}{\tan} \textcolor{orange}{B}}{1 \mp \textcolor{red}{\tan} \textcolor{purple}{A} \textcolor{red}{\tan} \textcolor{orange}{B}}

A LevelAQAEdexcelOCR


You might have noticed the “minus-plus” symbols above (\mp). This is no mistake, and it is not the same as “plus-minus, \pm“. The important thing to remember with this notation is that whichever symbol is chosen (top or bottom), must be used on the other side of the equation.

So, for example,

\textcolor{limegreen}{\cos} (\textcolor{purple}{A} + \textcolor{orange}{B}) = \textcolor{limegreen}{\cos} \textcolor{purple}{A} \textcolor{limegreen}{\cos} \textcolor{orange}{B} - \textcolor{blue}{\sin} \textcolor{purple}{A} \textcolor{blue}{\sin} \textcolor{orange}{B}


\textcolor{limegreen}{\cos} (\textcolor{purple}{A} - \textcolor{orange}{B}) = \textcolor{limegreen}{\cos} \textcolor{purple}{A} \textcolor{limegreen}{\cos} \textcolor{orange}{B} + \textcolor{blue}{\sin} \textcolor{purple}{A} \textcolor{blue}{\sin} \textcolor{orange}{B}

Double Angle Formulae

We can extend our addition formulae to two equal angles, also.

So, we have

\textcolor{blue}{\sin (2A)} = 2\textcolor{blue}{\sin A} \textcolor{limegreen}{\cos A}

\begin{aligned}\textcolor{limegreen}{\cos (2A)} &= \textcolor{limegreen}{\cos ^2 A} - \textcolor{blue}{\sin ^2 A}\\[1.2em]&=2\textcolor{limegreen}{\cos^2 A}-1\\[1.2em]&=1-2\textcolor{blue}{\sin^2 A}\end{aligned}

\textcolor{red}{\tan (2A)} = \dfrac{2\textcolor{red}{\tan A}}{1 - \textcolor{red}{\tan ^2 A}}

No worries if you forget these, you can just derive them from the addition formulae by setting B = A.

A LevelAQAEdexcelOCR
A Level AQA Edexcel OCR

Example: Finding Exact Values

Find the exact value of \textcolor{blue}{\sin} 75°, in the form \dfrac{1}{a\sqrt{b}}(c + \sqrt{d}).

[3 marks]

\textcolor{blue}{\sin} 75° = \textcolor{blue}{\sin} (30° + 45°)

= \textcolor{blue}{\sin} 30° \textcolor{limegreen}{\cos} 45° + \textcolor{blue}{\sin} 45° \textcolor{limegreen}{\cos} 30°

= \left( \dfrac{1}{2} \times \dfrac{1}{\sqrt{2}} \right) + \left( \dfrac{1}{\sqrt{2}} \times \dfrac{\sqrt{3}}{2} \right)

= \dfrac{1}{2\sqrt{2}} + \dfrac{\sqrt{3}}{2\sqrt{2}} = \dfrac{1}{2\sqrt{2}}(1 + \sqrt{3})

A LevelAQAEdexcelOCR

Example Questions

\cos 165° = \cos (210° - 45°)


= \cos 210° \cos 45° + \sin 210° \sin 45°


= \left( \dfrac{-\sqrt{3}}{2} \times \dfrac{1}{\sqrt{2}}\right) + \left( \dfrac{-1}{2} \times \dfrac{1}{\sqrt{2}}\right)


= \dfrac{-\sqrt{3} - 1}{2\sqrt{2}}

\tan 150° = \dfrac{2(2 + \sqrt{3})}{1 - (2 + \sqrt{3})^2}


= \dfrac{4 + 2\sqrt{3}}{-6 - 4\sqrt{3}} = \dfrac{2 + \sqrt{3}}{-3 - 2\sqrt{3}}


= \dfrac{(2 + \sqrt{3})(-3 + 2\sqrt{3})}{(-3 - 2\sqrt{3})(-3 + 2\sqrt{3})}


= \dfrac{-6 - 3\sqrt{3} + 4\sqrt{3} + 6}{9 - 12}


= \dfrac{\sqrt{3}}{-3} = \dfrac{-1}{\sqrt{3}}

\sin \left( x + \dfrac{\pi}{2}\right) = \sin x \cos \dfrac{\pi}{2} + \sin \dfrac{\pi}{2} \cos x


= (\sin x \times 0) + (\cos x \times 1)


= \cos x

Related Topics


Basic Trig Identities

A Level

Additional Resources


Exam Tips Cheat Sheet

A Level

Formula Booklet

A Level

Worksheet and Example Questions

Site Logo

Double Angle Formulae

A Level

You May Also Like...

A Level Maths Revision Cards

The best A level maths revision cards for AQA, Edexcel, OCR, MEI and WJEC. Maths Made Easy is here to help you prepare effectively for your A Level maths exams.

View Product

A Level Maths – Cards & Paper Bundle

A level maths revision cards and exam papers for Edexcel. Includes 2022 predicted papers based on the advance information released in February 2022! MME is here to help you study from home with our revision cards and practise papers.

From: £22.99
View Product

Transition Maths Cards

The transition maths cards are a perfect way to cover the higher level topics from GCSE whilst being introduced to new A level maths topics to help you prepare for year 12. Your ideal guide to getting started with A level maths!

View Product