Infinite Series Binomial Expansions
Infinite Series Binomial Expansions
Infinite Series Binomial Expansions
For (a+bx)^{n}, we can still get an expansion if n is not a positive whole number. However, the expansion goes on forever. In this page you will find out how to calculate the expansion and how to use it.
Make sure you are happy with the following topics before continuing.
The Infinite Binomial Expansion
Consider writing the binomial coefficients in a different way.
\begin{pmatrix}n\\0\end{pmatrix}=1
\begin{pmatrix}n\\1\end{pmatrix}=\dfrac{n}{1}
\begin{pmatrix}n\\2\end{pmatrix}=\dfrac{n(n-1)}{1\times2}
\begin{pmatrix}n\\3\end{pmatrix}=\dfrac{n(n-1)(n-2)}{1\times2\times3}
A clear pattern has emerged. Indeed:
\begin{pmatrix}n\\r\end{pmatrix}=\dfrac{n(n-1)(n-2)...(n-r+1)}{1\times2\times3\times...\times r}We can use this pattern instead of actual binomial coefficients to write an infinite expansion for (1+ax)^{n} when n is not a positive whole number.
(1+ax)^{n}=1+nax+\dfrac{n(n-1)}{1\times2}a^{2}x^{2}+...\dfrac{n(n-1)...(n-r+1)}{1\times2\times3\times...\times r}a^{r}x^{r}+...
A LevelNote: Factorisation
The formula above only works for expressions of the form (1+ax)^{n}, so how do we expand (ax+b)^{n}?
(ax+b)^{n}=b^{n}\left(1+\dfrac{a}{b}x\right)^{n}, and we can use our formula on \left(1+\dfrac{a}{b}x\right)^{n} then multiply by b^{n}.
Validity of the Binomial Expansion
(a+bx)^{n} is never infinite in value, but an infinite expansion might be unless each term is smaller than the last. To prevent this explosion to infinity we can only work with certain values of x. Specifically:
The binomial expansion of (ax+b)^{n} is only valid for |x|<\left|\dfrac{b}{a}\right|
Note: If n is an integer then we do not need to worry about this; we get a finite number of terms in the binomial expansion, so it can never have an infinite value and is thus always valid.
A LevelCombinations of Expansions
Sometimes, we will be asked to expand something that contains more than one binomial term. We do this by treating each binomial term individually, then handling them together at the end.
Example: Find the first three terms of the expansion of \color{red}(1+2x)^{-1}\color{blue}(1-3x)^{\frac{1}{2}}
\begin{aligned}\color{red}(1+2x)^{-1}&\color{red}=1-2x+\dfrac{(-1)(-2)}{1\times2}2^{2}x^{2}+...\\[1.2em]&\color{red}=1-2x+4x^{2}+...\end{aligned}
\begin{aligned}\color{blue}(1-3x)^{\frac{1}{2}}&\color{blue}=1+\dfrac{1}{2}(-3)x+\dfrac{\dfrac{1}{2}\times\dfrac{-1}{2}}{1\times2}(-3)^{2}x^{2}+...\\[1.2em]&\color{blue}=1-\dfrac{3}{2}x-\dfrac{\dfrac{1}{4}}{2}\times9x^{2}+...\\[1.2em]&\color{blue}=1-\dfrac{3}{2}x-\dfrac{9}{8}x^{2}+...\end{aligned}
\begin{aligned}&\color{red}(1+2x)^{-1}\color{blue}(1-3x)^{\frac{1}{2}}\color{grey}=\\[1.2em]&\color{red}(1-2x+4x^{2}+...)\color{blue}\left(1-\dfrac{3}{2}x-\dfrac{9}{8}x^{2}+...\right)\\[1.2em]&\color{grey}=\color{red}1\color{blue}\left(1-\dfrac{3}{2}x-\dfrac{9}{8}x^{2}+...\right)\color{grey}-\color{red}2x\color{blue}\left(1-\dfrac{3}{2}x+...\right)\color{grey}\\[1.2em]&+\color{red}4x^{2}\color{blue}(1+...)\\[1.2em]&\color{grey}=1-\dfrac{3}{2}x-\dfrac{9}{8}x^{2}-2x+3x^{2}+4x^{2}+...\\[1.2em]&\color{grey}=1-\dfrac{7}{2}x+\dfrac{47}{8}x^{2}+...\end{aligned}
A LevelExample Questions
Question 1: Convert these binomials into the form b(1+ax)^{n}.
i) (3+5x)^{3}
ii) (2+x)^{6}
iii) (81+18x)^{\frac{1}{4}}
iv) (3+2x)^{-\frac{1}{2}}
[4 marks]
i) (3+5x)^{3}=3^{3}\left(1+\dfrac{5}{3}x\right)^{3}=27\left(1+\dfrac{5}{3}x\right)^{3}
ii) (2+x)^{6}=2^{6}\left(1+\dfrac{1}{2}x\right)^{6}=64\left(1+\dfrac{1}{2}x\right)^{6}
iii) (81+18x)^{\frac{1}{4}}=81^{\frac{1}{4}}\left(1+\dfrac{18}{81}\right)^{\frac{1}{4}}=3\left(1+\dfrac{2}{9}\right)^{\frac{1}{4}}
iv) (3+2x)^{\frac{1}{2}}=3^{\frac{-1}{2}}\left(1+\dfrac{2}{3}x\right)^{\frac{-1}{2}}=\dfrac{1}{\sqrt{3}}\left(1+\dfrac{2}{3}x\right)^\frac{-1}{2}
Question 2: Find the first four terms of the binomial expansion of (1+4x)^{-2}
[4 marks]</p
\begin{aligned}(1+4x)^{-2}&=1+\big( (-2)\times4x\big) +\left( \dfrac{-2\times(-3)}{1\times2}(4x)^{2}\right) +\left( \dfrac{-2\times(-3)\times(-4)}{1\times2\times3}(4x)^{3}\right) \\[1.2em]&=1-8x+\left( \dfrac{6}{2}\times4^{2}x^{2}\right) -\left( \dfrac{24}{6}\times4^{3}x^{3}\right) \\[1.2em]&=1-8x+\big( 3\times16x^{2}\big) -\big( 4\times64x^{3}\big) \\[1.2em]&=1-8x+48x^{2}-256x^{3}\end{aligned}
Question 3: Find the first three terms of the binomial expansion of (3+x)^{\frac{1}{2}}. For which values of x is this expression valid?
[3 marks]
\begin{aligned}(3+x)^{\frac{1}{2}}&=3^{\frac{1}{2}}\left(1+\dfrac{1}{3}x\right)^{\frac{1}{2}}\\[1.2em]&=\sqrt{3}\left(1+\left( \dfrac{1}{2}\times\dfrac{1}{3}x\right) +\left( \dfrac{\dfrac{1}{2}\times\dfrac{-1}{2}}{1\times2}\times\left(\dfrac{1}{3}x\right)^{2}\right) \right) \\[1.2em]&=\sqrt{3}\left(1+\dfrac{1}{6}x-\left( \dfrac{\left( \dfrac{1}{4}\right) }{2}\times\dfrac{1}{9}x^{2}\right) \right) \\[1.2em]&=\sqrt{3}\left(1+\dfrac{1}{6}x-\left( \dfrac{1}{8}\times\dfrac{1}{9}x^{2}\right) \right) \\[1.2em]&=\sqrt{3}\left(1+\dfrac{1}{6}x-\dfrac{1}{72}x^{2}\right)\end{aligned}
This is valid for |x|<3
Question 4: Find the first three terms of the expansion of \dfrac{(1+2x)^{\frac{1}{2}}}{(3+2x)^{2}}
[6 marks]
Related Topics
Binomial Expansion
A LevelYou May Also Like...
A Level Maths Revision Cards
The best A level maths revision cards for AQA, Edexcel, OCR, MEI and WJEC. Maths Made Easy is here to help you prepare effectively for your A Level maths exams.
A Level Maths – Cards & Paper Bundle
A level maths revision cards and exam papers for Edexcel. Includes 2022 predicted papers based on the advance information released in February 2022! MME is here to help you study from home with our revision cards and practise papers.
Transition Maths Cards
The transition maths cards are a perfect way to cover the higher level topics from GCSE whilst being introduced to new A level maths topics to help you prepare for year 12. Your ideal guide to getting started with A level maths!