Infinite Series Binomial Expansions

A LevelAQAEdexcelOCR

Infinite Series Binomial Expansions Revision

Infinite Series Binomial Expansions

For (a+bx)^{n}, we can still get an expansion if n is not a positive whole number. However, the expansion goes on forever. In this page you will find out how to calculate the expansion and how to use it.

Make sure you are happy with the following topics before continuing.

A LevelAQAEdexcelOCR

The Infinite Binomial Expansion

Consider writing the binomial coefficients in a different way.

\begin{pmatrix}n\\0\end{pmatrix}=1

\begin{pmatrix}n\\1\end{pmatrix}=\dfrac{n}{1}

\begin{pmatrix}n\\2\end{pmatrix}=\dfrac{n(n-1)}{1\times2}

\begin{pmatrix}n\\3\end{pmatrix}=\dfrac{n(n-1)(n-2)}{1\times2\times3}

A clear pattern has emerged. Indeed:

\begin{pmatrix}n\\r\end{pmatrix}=\dfrac{n(n-1)(n-2)...(n-r+1)}{1\times2\times3\times...\times r}

We can use this pattern instead of actual binomial coefficients to write an infinite expansion for (1+ax)^{n} when n is not a positive whole number.

(1+ax)^{n}=1+nax+\dfrac{n(n-1)}{1\times2}a^{2}x^{2}+...\dfrac{n(n-1)...(n-r+1)}{1\times2\times3\times...\times r}a^{r}x^{r}+...

A LevelAQAEdexcelOCR
MME Logo
TikTok

Your 2024 Revision Partner

@mmerevise

Open TikTok

Note: Factorisation

The formula above only works for expressions of the form (1+ax)^{n}, so how do we expand (ax+b)^{n}?

(ax+b)^{n}=b^{n}\left(1+\dfrac{a}{b}x\right)^{n}, and we can use our formula on \left(1+\dfrac{a}{b}x\right)^{n} then multiply by b^{n}.

Validity of the Binomial Expansion

(a+bx)^{n} is never infinite in value, but an infinite expansion might be unless each term is smaller than the last. To prevent this explosion to infinity we can only work with certain values of x. Specifically:

The binomial expansion of (ax+b)^{n} is only valid for |x|<\left|\dfrac{b}{a}\right|

Note: If n is an integer then we do not need to worry about this; we get a finite number of terms in the binomial expansion, so it can never have an infinite value and is thus always valid.

A LevelAQAEdexcelOCR

Combinations of Expansions

Sometimes, we will be asked to expand something that contains more than one binomial term. We do this by treating each binomial term individually, then handling them together at the end.

Example: Find the first three terms of the expansion of \color{red}(1+2x)^{-1}\color{blue}(1-3x)^{\frac{1}{2}}

\begin{aligned}\color{red}(1+2x)^{-1}&\color{red}=1-2x+\dfrac{(-1)(-2)}{1\times2}2^{2}x^{2}+...\\[1.2em]&\color{red}=1-2x+4x^{2}+...\end{aligned}

\begin{aligned}\color{blue}(1-3x)^{\frac{1}{2}}&\color{blue}=1+\dfrac{1}{2}(-3)x+\dfrac{\dfrac{1}{2}\times\dfrac{-1}{2}}{1\times2}(-3)^{2}x^{2}+...\\[1.2em]&\color{blue}=1-\dfrac{3}{2}x-\dfrac{\dfrac{1}{4}}{2}\times9x^{2}+...\\[1.2em]&\color{blue}=1-\dfrac{3}{2}x-\dfrac{9}{8}x^{2}+...\end{aligned}

\begin{aligned}&\color{red}(1+2x)^{-1}\color{blue}(1-3x)^{\frac{1}{2}}\color{grey}=\\[1.2em]&\color{red}(1-2x+4x^{2}+...)\color{blue}\left(1-\dfrac{3}{2}x-\dfrac{9}{8}x^{2}+...\right)\\[1.2em]&\color{grey}=\color{red}1\color{blue}\left(1-\dfrac{3}{2}x-\dfrac{9}{8}x^{2}+...\right)\color{grey}-\color{red}2x\color{blue}\left(1-\dfrac{3}{2}x+...\right)\color{grey}\\[1.2em]&+\color{red}4x^{2}\color{blue}(1+...)\\[1.2em]&\color{grey}=1-\dfrac{3}{2}x-\dfrac{9}{8}x^{2}-2x+3x^{2}+4x^{2}+...\\[1.2em]&\color{grey}=1-\dfrac{7}{2}x+\dfrac{47}{8}x^{2}+...\end{aligned}

A LevelAQAEdexcelOCR

Infinite Series Binomial Expansions Example Questions

i) (3+5x)^{3}=3^{3}\left(1+\dfrac{5}{3}x\right)^{3}=27\left(1+\dfrac{5}{3}x\right)^{3}

ii) (2+x)^{6}=2^{6}\left(1+\dfrac{1}{2}x\right)^{6}=64\left(1+\dfrac{1}{2}x\right)^{6}

iii) (81+18x)^{\frac{1}{4}}=81^{\frac{1}{4}}\left(1+\dfrac{18}{81}\right)^{\frac{1}{4}}=3\left(1+\dfrac{2}{9}\right)^{\frac{1}{4}}

iv) (3+2x)^{\frac{1}{2}}=3^{\frac{-1}{2}}\left(1+\dfrac{2}{3}x\right)^{\frac{-1}{2}}=\dfrac{1}{\sqrt{3}}\left(1+\dfrac{2}{3}x\right)^\frac{-1}{2}

\begin{aligned}(1+4x)^{-2}&=1+\big( (-2)\times4x\big) +\left( \dfrac{-2\times(-3)}{1\times2}(4x)^{2}\right) +\left( \dfrac{-2\times(-3)\times(-4)}{1\times2\times3}(4x)^{3}\right) \\[1.2em]&=1-8x+\left( \dfrac{6}{2}\times4^{2}x^{2}\right) -\left( \dfrac{24}{6}\times4^{3}x^{3}\right) \\[1.2em]&=1-8x+\big( 3\times16x^{2}\big) -\big( 4\times64x^{3}\big) \\[1.2em]&=1-8x+48x^{2}-256x^{3}\end{aligned}

\begin{aligned}(3+x)^{\frac{1}{2}}&=3^{\frac{1}{2}}\left(1+\dfrac{1}{3}x\right)^{\frac{1}{2}}\\[1.2em]&=\sqrt{3}\left(1+\left( \dfrac{1}{2}\times\dfrac{1}{3}x\right) +\left( \dfrac{\dfrac{1}{2}\times\dfrac{-1}{2}}{1\times2}\times\left(\dfrac{1}{3}x\right)^{2}\right) \right) \\[1.2em]&=\sqrt{3}\left(1+\dfrac{1}{6}x-\left( \dfrac{\left( \dfrac{1}{4}\right) }{2}\times\dfrac{1}{9}x^{2}\right) \right) \\[1.2em]&=\sqrt{3}\left(1+\dfrac{1}{6}x-\left( \dfrac{1}{8}\times\dfrac{1}{9}x^{2}\right) \right) \\[1.2em]&=\sqrt{3}\left(1+\dfrac{1}{6}x-\dfrac{1}{72}x^{2}\right)\end{aligned}

 

This is valid for |x|<3

\begin{aligned}&\dfrac{(1+2x)^{\frac{1}{2}}}{(3+2x)^{2}}=(1+2x)^{\frac{1}{2}}(3+2x)^{-2}\\[1.2em]&=\left(1+\left( \dfrac{1}{2}\times2x\right) +\left( \dfrac{\dfrac{1}{2}\times\dfrac{-1}{2}}{1\times2}(2x)^{2}\right) +...\right)\times3^{-2}\left(1+\dfrac{2}{3}x\right)^{-2}\\[1.2em]&=\left(1+x-\left( \dfrac{\left( \dfrac{1}{4}\right) }{2}\times4x^{2}\right) +...\right)\times\dfrac{1}{9}\left(1-\left( 2\times\dfrac{2}{3}x\right) +\left( \dfrac{-2\times(-3)}{1\times2}\left(\dfrac{2}{3}x\right)^{2}\right) +...\right)\\[1.2em]&=\dfrac{1}{9}\left(1+x-\left( \dfrac{1}{8}\times4x^{2}\right) +...\right)\left(1-\dfrac{4}{3}x+\dfrac{6}{2}\times\dfrac{4}{9}x^{2}+...\right)\\[1.2em]&=\dfrac{1}{9}\left(1+x-\dfrac{1}{2}x^{2}+...\right)\left(1-\dfrac{4}{3}x+\dfrac{4}{3}x^{2}+...\right)\\[1.2em]&=\dfrac{1}{9}\left(1+x-\dfrac{1}{2}x^{2}-\dfrac{4}{3}x-\dfrac{4}{3}x^{2}+\dfrac{4}{3}x^{2}+...\right)\\[1.2em]&=\dfrac{1}{9}\left(1-\dfrac{1}{3}x-\dfrac{1}{2}x^{2}+...\right)\\[1.2em]&=\dfrac{1}{9}-\dfrac{1}{27}x-\dfrac{1}{18}x^{2}+...\end{aligned}

Additional Resources

MME

Exam Tips Cheat Sheet

A Level
MME

Formula Booklet

A Level

You May Also Like...

MME Learning Portal

Online exams, practice questions and revision videos for every GCSE level 9-1 topic! No fees, no trial period, just totally free access to the UK’s best GCSE maths revision platform.

£0.00
View Product

Related Topics

MME

Binomial Expansion

A Level