More Binomial Expansions

A LevelAQAEdexcelOCR

More Binomial Expansions Revision

More Binomial Expansions

In this section we shall look at some advanced skills involving binomial expansion, including partial fractions and approximating.

Make sure you are happy with the following topics before continuing.

A LevelAQAEdexcelOCR

Partial Fractions

We can find the binomial expansion of complicated functions by first decomposing them into partial fractions.

Example: Find the first three terms of the expansion of \dfrac{2x+1}{(x-1)(x+2)}.

\begin{aligned}\dfrac{2x+1}{(x-1)(x+2)}&=\dfrac{1}{x-1}+\dfrac{1}{x+2}\\[1.2em]&=(x-1)^{-1}+(x+2)^{-1}\end{aligned}

Now we can do binomial expansion on (x-1)^{-1} and (x+2)^{-1}

\begin{aligned}&\dfrac{2x+1}{(x-1)(x+2)}=(-1)^{-1}(1-x)^{-1}+2^{-1}\left(1+\dfrac{1}{2}x\right)^{-1}\\[1.2em]&=-\left(1-(-x)+\dfrac{-1\times(-2)}{1\times2}(-x)^{2}+...\right)\\[1.2em]&+\dfrac{1}{2}\left(1-\dfrac{1}{2}x+\dfrac{-1\times(-2)}{1\times2}\left(\dfrac{1}{2}x\right)^{2}+...\right)\\[1.2em]&=-\left(1+x+\dfrac{2}{2}x^{2}+...\right)\\[1.2em]&+\dfrac{1}{2}\left(1-\dfrac{1}{2}x+\dfrac{2}{2}\times\dfrac{1}{4}x^{2}+...\right)\\[1.2em]&=-(1+x+x^{2}+...)+\dfrac{1}{2}\left(1-\dfrac{1}{2}x+\dfrac{1}{4}x^{2}+...\right)\\[1.2em]&=-1-x-x^{2}+\dfrac{1}{2}-\dfrac{1}{4}x+\dfrac{1}{8}x^{2}+...\\[1.2em]&=-\dfrac{1}{2}-\dfrac{5}{4}x-\dfrac{7}{8}x^{2}+...\end{aligned}

A LevelAQAEdexcelOCR
MME Logo
TikTok

Your 2024 Revision Partner

@mmerevise

Open TikTok

Approximations from Binomial Expansions

By substituting in certain values for x, we can use the binomial expansion to approximate things.

Example: Use the binomial expansion of (1-3x)^{\frac{1}{4}} to four terms to find \sqrt[4]{0.97}

 

\begin{aligned}(1-3x)^{\frac{1}{4}}&=1-\left(\dfrac{1}{4}\times3x\right)+\left(\dfrac{\dfrac{1}{4}\times -\dfrac{3}{4}}{1\times2}\times(-3x)^{2}\right)\\[1.2em]&+\left(\dfrac{\dfrac{1}{4}\times -\dfrac{3}{4}\times-\dfrac{7}{4}}{1\times2\times3}\times(-3x)^{3}\right)+...\\[1.2em]&=1-\dfrac{3}{4}x+\left(\dfrac{-\dfrac{3}{16}}{2}\times9x^{2}\right)-\left(\dfrac{\dfrac{21}{64}}{6}\times27x^{3}\right)+...\\[1.2em]&=1-\dfrac{3}{4}x-\dfrac{3\times9}{16\times2}x^{2}-\dfrac{21\times27}{64\times6}x^{3}\\[1.2em]&=1-\dfrac{3}{4}x-\dfrac{27}{32}x^{2}-\dfrac{567}{384}x^{3}\\[1.2em]&=1-\dfrac{3}{4}x-\dfrac{27}{32}x^{2}-\dfrac{189}{128}x^{3}\end{aligned}

 

Now substitute x=\dfrac{1}{100}

 

\left(1-3\times\dfrac{1}{100}\right)^{\frac{1}{4}}=1-\left(\dfrac{3}{4}\times\dfrac{1}{100}\right)-\left(\dfrac{27}{32}\times\left(\dfrac{1}{100}\right)^{2}\right)-\left(\dfrac{189}{128}\times\left(\dfrac{1}{100}\right)^{3}\right)

 

(1-3\times0.01)^{\frac{1}{4}}=1-\dfrac{3}{400}-\left(\dfrac{27}{32}\times\dfrac{1}{10000}\right)-\left(\dfrac{189}{128}\times\dfrac{1}{1000000}\right)

 

(1-0.03)^{\frac{1}{4}}=1-\dfrac{3}{400}-\dfrac{27}{320000}-\dfrac{189}{128000000}

 

0.97^{\frac{1}{4}}=0.9916547734

 

So our estimate is \sqrt[4]{0.97}=0.9916547734, which is very close to the real value of 0.9924141173. Clearly, this approximation method is a very powerful tool.

A LevelAQAEdexcelOCR

More Binomial Expansions Example Questions

\begin{aligned}&\dfrac{6x^{2}+25x+23}{(x+1)(x+2)(x+3)}=\dfrac{2}{x+1}+\dfrac{3}{x+2}+\dfrac{1}{x+3}\\[1.2em]&=2(x+1)^{-1}+3(x+2)^{-1}+(x+3)^{-1}\\[1.2em]&=2(1+x)^{-1}+3\times2^{-1}\left(1+\dfrac{1}{2}x\right)^{-1}\\[1.2em]&+3^{-1}\left(1+\dfrac{1}{3}x\right)^{-1}\\[1.2em]&=2(1+x)^{-1}+3\times\dfrac{1}{2}\left(1+\dfrac{1}{2}x\right)^{-1}\\[1.2em]&+\dfrac{1}{3}\left(1+\dfrac{1}{3}x\right)^{-1}\\[1.2em]&=2(1+x)^{-1}+\dfrac{3}{2}\left(1+\dfrac{1}{2}x\right)^{-1}+\dfrac{1}{3}\left(1+\dfrac{1}{3}x\right)^{-1}\\[1.2em]&=2\left(1-x+\dfrac{-1\times(-2)}{1\times2}x^{2}\right)\\[1.2em]&+\dfrac{3}{2}\left(1-\dfrac{1}{2}x+\dfrac{-1\times(-2)}{1\times2}\left(\dfrac{1}{2}x\right)^{2}\right)\\[1.2em]&+\dfrac{1}{3}\left(1-\dfrac{1}{3}x+\dfrac{-1\times(-2)}{1\times2}\left(\dfrac{1}{3}x\right)^{2}\right)\\[1.2em]&=2\left(1-x+\dfrac{2}{2}x^{2}\right)+\dfrac{3}{2}\left(1-\dfrac{1}{2}x+\dfrac{2}{2}\times\dfrac{1}{4}x^{2}\right)\\[1.2em]&+\dfrac{1}{3}\left(1-\dfrac{1}{3}x+\dfrac{2}{2}\times\dfrac{1}{9}x^{2}\right)\\[1.2em]&=2(1-x+x^{2})+\dfrac{3}{2}\left(1-\dfrac{1}{2}x+\dfrac{1}{4}x^{2}\right)\\[1.2em]&+\dfrac{1}{3}\left(1-\dfrac{1}{3}x+\dfrac{1}{9}x^{2}\right)\\[1.2em]&=2-2x+2x^{2}+\dfrac{3}{2}-\dfrac{3}{4}x+\dfrac{3}{8}x^{2}+\dfrac{1}{3}-\dfrac{1}{9}x\\[1.2em]&+\dfrac{1}{27}x^{2}\\[1.2em]&=\dfrac{23}{6}-\dfrac{103}{36}x+\dfrac{521}{216}x^{2}\end{aligned}

Try x=0.02

 

(1-8\times0.02)^{\frac{1}{3}}=1-\left(\dfrac{8}{3}\times0.02\right)-\left(\dfrac{64}{9}\times0.02^{2}\right)+...

 

(1-0.16)^{\frac{1}{3}}=1-\dfrac{0.16}{3}-\left(\dfrac{64}{9}\times0.0004\right)+...

 

(0.84)^{\frac{1}{3}}=1-\dfrac{16}{300}-\dfrac{0.0256}{9}+...

 

\begin{aligned}\sqrt[3]{0.84}&=1-\dfrac{4}{75}-\dfrac{256}{90000}+...\\[1.2em]&=1-\dfrac{4}{75}-\dfrac{16}{5625}+...\\[1.2em]&=1-\dfrac{4}{75}-\dfrac{16}{5625}+...\\[1.2em]&=\dfrac{5309}{5625}\\[1.2em]&=0.9438\end{aligned}

i) \dfrac{2+9x}{(1+5x)(1+4x)}=\dfrac{A}{1+5x}+\dfrac{B}{1+4x}

 

2+9x=A(1+4x)+B(1+5x)

 

2+9x=A+4Ax+B+5Bx

 

A+B=2\;\;5A+4B=9

 

A=1\;\;B=1

 

\dfrac{2+9x}{(1+5x)(1+4x)}=\dfrac{1}{1+5x}+\dfrac{1}{1+4x}

 

ii)

\begin{aligned}&\dfrac{2+9x}{(1+5x)(1+4x)}=\dfrac{1}{1+5x}+\dfrac{1}{1+4x}\\[1.2em]&=(1+5x)^{-1}+(1+4x)^{-1}\\[1.2em]&=1-5x+\left(\dfrac{-1\times(-2)}{1\times2}(5x)^{2}\right)+...+1-4x\\[1.2em]&+\left(\dfrac{-1\times(-2)}{1\times2}(4x)^{2}\right)+...\\[1.2em]&=1-5x+\left(\dfrac{2}{2}\times25x^{2}\right)+...+1-4x\\[1.2em]&+\left(\dfrac{-1\times(-2)}{1\times2}16x^{2}\right)+...\\[1.2em]&=2-9x+25x^{2}+16x^{2}+...\\[1.2em]&=2-9x+41x^{2}+...\end{aligned}
\begin{aligned}&(1-7x)^{-3}=1-\left(7\times(-3)x\right)+\left(\dfrac{-3\times(-4)}{1\times2}(-7x)^{2}\right)\\[1.2em]&+\left(\dfrac{-3\times(-4)\times(-5)}{1\times2\times3}(-7x)^{3}\right)\\[1.2em]&+\left(\dfrac{-3\times(-4)\times(-5)\times(-6)}{1\times2\times3\times4}(-7x)^{4}\right)+...\\[1.2em]&=1+21x+\left(\dfrac{12}{2}\times49x^{2}\right)+\left(\dfrac{-60}{6}\times(-343)x^{3}\right)\\[1.2em]&+\left(\dfrac{360}{24}\times2401x^{4}\right)+...\\[1.2em]&=1+21x+(6\times49x^{2})+(10\times343x^{3})+(15\times2401x^{4})\\[1.2em]&+...\\[1.2em]&=1+21x+294x^{2}+3430x^{3}+36015x^{4}+...\end{aligned}

 

Use x=0.01

 

(1-7\times0.01)^{-3}=1+(21\times0.01)+(294\times0.01^{2})+(3430\times0.01^{3})+(36015\times0.01^{4})+...

 

(1-0.07)^{-3}=1+0.21+(294\times0.0001)+(3430\times0.000001)+(36015\times0.00000001)+...

 

0.93^{-3}=1+0.21+0.0294+0.00343+0.00036015+...

 

\begin{aligned}\dfrac{1}{0.93^{3}}&=1+0.21+0.0294+0.00343+0.00036015+...\\[1.2em]&=1.24319015\end{aligned}

Additional Resources

MME

Exam Tips Cheat Sheet

A Level
MME

Formula Booklet

A Level

More Binomial Expansions Worksheet and Example Questions

You May Also Like...

MME Learning Portal

Online exams, practice questions and revision videos for every GCSE level 9-1 topic! No fees, no trial period, just totally free access to the UK’s best GCSE maths revision platform.

£0.00
View Product

Related Topics

MME

Partial Fractions

A Level
MME

Binomial Expansion

A Level
MME

Infinite Series Binomial Expansions

A Level