Trig Proofs
Trig Proofs
Trig Proofs
In this section, we’ll be taking a look at some standard proof methods, involving all of the techniques we’ve learned so far.
Example 1
Prove that 1 + \cot ^2 A \equiv \cosec ^2 A.
[3 marks]
1 + \cot ^2 A
= \dfrac{\textcolor{blue}{\sin} ^2 \textcolor{purple}{A}}{\textcolor{blue}{\sin} ^2 \textcolor{purple}{A}} + \dfrac{\textcolor{limegreen}{\cos} ^2 \textcolor{purple}{A}}{\textcolor{blue}{\sin} ^2 \textcolor{purple}{A}}
= \dfrac{\textcolor{blue}{\sin} ^2 \textcolor{purple}{A} + \textcolor{limegreen}{\cos} ^2 \textcolor{purple}{A}}{\textcolor{blue}{\sin} ^2 \textcolor{purple}{A}}
= \dfrac{1}{\textcolor{blue}{\sin} ^2 \textcolor{purple}{A}}
= \cosec ^2 \textcolor{purple}{A}
A LevelExample 2
Show that \sqrt{\dfrac{1 - \textcolor{limegreen}{\cos 2x}}{1 + \textcolor{limegreen}{\cos} 2x}} = \textcolor{red}{\tan} x.
[4 marks]
By \textcolor{limegreen}{\cos} 2A \equiv 2\textcolor{limegreen}{\cos} ^2 A - 1 \equiv 1 - 2\textcolor{blue}{\sin} ^2 A,
\sqrt{\dfrac{1 - \textcolor{limegreen}{\cos} 2x}{1 + \textcolor{limegreen}{\cos} 2x}}
= \sqrt{\dfrac{2\textcolor{blue}{\sin} ^2 x}{2\textcolor{limegreen}{\cos} ^2 x}}
= \sqrt{\textcolor{red}{\tan} ^2 x}
= \textcolor{red}{\tan} x
A LevelExample 3
Prove that \textcolor{limegreen}{\cos} x = \textcolor{limegreen}{\cos} (-x).
[2 marks]
\textcolor{limegreen}{\cos} (-x)
= \textcolor{limegreen}{\cos} (0 - x)
= \textcolor{limegreen}{\cos} 0 \textcolor{limegreen}{\cos} x + \textcolor{blue}{\sin} 0 \textcolor{blue}{\sin} x
= (1 \times \textcolor{limegreen}{\cos} x) + (0 \times \textcolor{blue}{\sin} x)
= \textcolor{limegreen}{\cos} x
A LevelExample 4
Show that \textcolor{red}{\tan} \theta + \cot \theta = 2\cosec 2 \theta.
[3 marks]
\textcolor{red}{\tan} \theta + \cot \theta
= \dfrac{\textcolor{blue}{\sin} \theta}{\textcolor{limegreen}{\cos} \theta} + \dfrac{\textcolor{limegreen}{\cos} \theta}{\textcolor{blue}{\sin} \theta}
= \dfrac{\textcolor{blue}{\sin} ^2 \theta}{\textcolor{blue}{\sin} \theta \textcolor{limegreen}{\cos} \theta} + \dfrac{\textcolor{limegreen}{\cos} ^2 \theta}{\textcolor{blue}{\sin} \theta \textcolor{limegreen}{\cos} \theta}
= \dfrac{\textcolor{blue}{\sin} ^2 \theta + \textcolor{limegreen}{\cos} ^2 \theta}{\textcolor{blue}{\sin} \theta \textcolor{limegreen}{\cos} \theta}
= \dfrac{1}{\textcolor{blue}{\sin} \theta \textcolor{limegreen}{\cos} \theta}
= \dfrac{2}{\textcolor{blue}{\sin} 2\theta}
= 2\cosec 2 \theta
A LevelExample Questions
Question 1: Show that, for small values of x, \dfrac{3 - 3\cos 2x}{4x\tan x} \approx \dfrac{3}{2}.
[3 marks]
\dfrac{3 - 3(1 - 2x^2)}{4x^2} = \dfrac{6x^2}{4x^2} = \dfrac{3}{2}
Question 2: Prove that \dfrac{\sin x}{\cos x} = \tan x.
[2 marks]
- \sin x = \dfrac{\text{opp}}{\text{hyp}}
- \cos x = \dfrac{\text{adj}}{\text{hyp}}
- \tan x = \dfrac{\text{opp}}{\text{adj}}
\dfrac{\sin x}{\cos x} = \dfrac{\left( \dfrac{\text{opp}}{\text{hyp}}\right) }{\left( \dfrac{\text{adj}}{\text{hyp}}\right) } = \dfrac{\text{opp}}{\text{adj}} = \tan x
Question 3: Show that \cosec ^2 x - \cos ^2 x \equiv \cot ^2 x + \sin ^2 x.
[3 marks]
\begin{aligned}\cot ^2 x + \sin ^2 x&= \dfrac{\cos ^2 x}{\sin ^2 x} + \sin ^2 x\\[1.2em]&= \dfrac{\cos ^2 x}{\sin ^2 x} + 1 - \cos ^2 x\\[1.2em]&= \dfrac{\cos ^2 x}{\sin ^2 x} + \dfrac{\sin ^2 x}{\sin ^2 x} - \cos ^2 x\\[1.2em]&= \dfrac{\cos ^2 x + \sin ^2 x}{\sin ^2 x} - \cos ^2 x\\[1.2em]&=\dfrac{1}{\sin ^2 x} - \cos ^2 x\\[1.2em]&= \cosec ^2 x - \cos ^2 x\end{aligned}
Worksheet and Example Questions
Trigonometry
A LevelYou May Also Like...
A Level Maths Revision Cards
The best A level maths revision cards for AQA, Edexcel, OCR, MEI and WJEC. Maths Made Easy is here to help you prepare effectively for your A Level maths exams.
A Level Maths – Cards & Paper Bundle
A level maths revision cards and exam papers for Edexcel. Includes 2022 predicted papers based on the advance information released in February 2022! MME is here to help you study from home with our revision cards and practise papers.
Transition Maths Cards
The transition maths cards are a perfect way to cover the higher level topics from GCSE whilst being introduced to new A level maths topics to help you prepare for year 12. Your ideal guide to getting started with A level maths!