# Area Under a Graph Worksheets, Questions and Revision

GCSE 8 - 9AQAEdexcelOCRWJECFoundationAQA 2022Edexcel 2022OCR 2022WJEC 2022

## Area Under a Curve

Velocity-time graphs that are made up of straight lines are easy to split up into regular shapes to calculate the area.

Area Under Velocity Time Graph = Total Distance Travelled

However, if the graph is curved then the area must be approximated by using triangles, rectangles and trapeziums and their respective area formulas.

Make sure you are happy with the following topics before continuing:

## Estimating Area using Triangles and Trapeziums

Below is a speed-time graph. Use equal width shapes to find an approximation for the total distance travelled.

[3 marks] Given that we’re looking for the area under the graph in the first $4$ seconds, we will use a width of $\bf{1}$ second on the $\bm{x}$-axis. We can estimate the area fairly accurately by using a triangle,  shape $\bf{A}$ and three trapeziums, shapes, $\bf{B}, \bf{C}$ and $\bf{D}$. Now all we have to do is to find the area of all $4$ shapes.

Shape $\bf{A}$: Is a triangle,

$\text{Area of A }= \dfrac{1}{2} \times \text{base} \times \text{height} = \dfrac{1}{2}\times 1 \times 4.4=2.2$

Shape $\bf{B}$: Is a trapezium.

$\text{Area of B } = \dfrac{1}{2}(a+b)h = \dfrac{1}{2}\times (4.4+6.4) \times 1=5.4$

Shape $\bf{C}$: Is a trapezium.

$\text{Area of C }=\dfrac{1}{2}\times (6.4+7.8) \times 1=7.1$

Shape $\bf{D}$: Is a trapezium.

$\text{Area of D }=\dfrac{1}{2}\times (7.8+9) \times 1=8.4$

Therefore, for our final estimate for the area under the graph we add together the area of each shape, and so the distance travelled is

$2.2+5.4+7.1+8.4=23.1$ m

Note: Because of the way we calculate this estimate, people’s answers will naturally vary a little, but this doesn’t mean they’re wrong. In an exam, there will be a range of answers that you will receive full marks for, you just have to try to be as accurate as you can with your estimate.

Level 8-9GCSE    ## Example Questions

We’ll need $4$ strips of equal width over the course of $20$ seconds. $20\div 4=5$, so each strip must be $5$ seconds wide on the $x$-axis. We start by drawing vertical lines every $5$ seconds going from the $x$-axis up to the graph.

Then, connecting each of the points where those vertical lines meet the graph, we get our $4$ strips: $3$ trapeziums and $1$ triangle. Lastly, drawing some horizontal lines from the ‘corners’ of our trapeziums to ensure we can read off the $y$-values, our picture should look like the graph below. For ease, we’ve labelled the four shapes that we going to find the areas of with the letters $A$, $B$, $C$, and $D$. Shape $A$ is a triangle, so reading the $y$-value from the graph we get

$\text{Area of A }=\dfrac{1}{2}\times 5 \times 3.5=8.75$

The other $3$ shapes are trapeziums. Reading the remaining $y$-values from the graph, we get

$\text{Area of B }=\dfrac{1}{2}\times (3.5+14)\times 5=43.75$

$\text{Area of C }=\dfrac{1}{2}\times (14+32)\times 5=115$

$\text{Area of D }=\dfrac{1}{2}\times (32+57)\times 5=222.5$

Now, adding up the results, we get the estimate of the distance travelled to be

$8.75+43.75+115+222.5=390$ m.

Note: Any answer between $385$ m and $395$ m is acceptable in this case.

We’ll need $3$ strips of equal width over the course of $3$ seconds, so each strip must be $1$ second wide on the $x$-axis. We start by drawing vertical lines every second, between $5$ s and $8$ s, going from the $x$-axis up to the graph.

Then, connecting each of the points where those vertical lines meet the graph, we get our $3$ strips: all trapeziums. Lastly, drawing some horizontal lines from the ‘corners’ of our trapeziums to ensure we can read off the $y$-values, our picture should look like the graph below. For ease, we’ve labelled the three shapes that we going to find the areas of with the letters $A$, $B$, and $C$. All $3$ are trapeziums of “height” $1$, so, reading the $y$-values from the graph we get

$\text{area of A }=\dfrac{1}{2}\times (19+25)\times 1=22$

$\text{area of B }=\dfrac{1}{2}\times (25+20)\times 1=22.5$

$\text{area of C }=\dfrac{1}{2}\times (20+10)\times 1=15$

Now, adding up the results, we get the estimate of the distance travelled to be

$22 + 22.5 + 15 = 59.5$ m.

Note: Any answer between $59$ m and $60$ m is acceptable in this case.

Level 6-7GCSE

Level 4-5GCSEKS3

## You May Also Like... ### GCSE Maths Revision Cards

Revise for your GCSE maths exam using the most comprehensive maths revision cards available. These GCSE Maths revision cards are relevant for all major exam boards including AQA, OCR, Edexcel and WJEC.

£8.99 ### GCSE Maths Revision Guide

The MME GCSE maths revision guide covers the entire GCSE maths course with easy to understand examples, explanations and plenty of exam style questions. We also provide a separate answer book to make checking your answers easier!

From: £14.99 ### Transition Maths Cards

The transition maths cards are a perfect way to cover the higher level topics from GCSE whilst being introduced to new A level maths topics to help you prepare for year 12. Your ideal guide to getting started with A level maths!

£8.99