# BIDMAS or BODMAS Questions, Revision and Worksheets

# BIDMAS or BODMAS Questions, Revision and Worksheets

**BIDMAS or BODMAS**

**BIDMAS** (sometimes **BODMAS**) is an acronym that helps us remember which order to perform operations in. We start from left to right. The letters stand for:

**B**rackets**I**ndices (or as they can be called,**O**rders)**D**ivision**M**ultiplication**A**ddition**S**ubtraction

**Using BIDMAS**

When performing calculations, always follow the **BIDMAS** order of operations.

**Example:** Work out the value of 3 \times(3^2 + 4) - 8

**Step 1:** The first letter of** BIDMAS** is **B**, meaning the first thing we should do is look to what’s inside the **brackets**. (If there are not brackets, move onto indices, then divide and so on..)

Here, we have two operations happening: a **power/index**, and an **addition**. The letter **I** comes before the letter **A** in **BIDMAS** which means we first work out the result of 3^2 and then add 4 to it.

(3^2 + 4) = (9 + 4) = 13

**Step 2:** We are left with a multiplication and a subtraction, so because **M** comes before **S**, we do the **multiplication first** and the **subtraction second**,

3 \times 13 - 8 = 39 - 8 = 31

Level 1-3 GCSE KS3**BIDMAS and Fractions**

For fractions, we work out what the values of the top (numerator) and bottom (denominator) are separately (using the rules of **BIDMAS**), and then lastly, we look at the fraction we have and see if it can be **simplified**.

**Example:** Simplify the fraction \dfrac{3 \times 4 - 5}{11 + (9 \div 3)}

**Step 1: **First, considering the numerator. There’s a **multiplication** and a **subtraction**, so we do the **multiplication first** and the **subtraction** **second**.

3 \times 4 - 5 = 12 - 5 = 7

**Step 2: **Now, the denominator. That contains a **division** inside **brackets**, so that will be the first bit of the calculation, and then the **addition** will be second.

11 + (9 \div 3) = 11 + (3) = 14

**Step 3: **Therefore, our fraction is \dfrac{7}{14}. Both top and bottom have a factor of 7, so the simplified answer is

\dfrac{7}{14} = \dfrac{1}{2}

Level 1-3 GCSE KS3**Note:**

- For
**division**and**multiplication**, work them out in the order that they appear (from left to right). - For
**addition**and**subtraction**, calculate them in the order that they appear (from left to right) when they are the only two operations left in the sum.

**Example: BIDMAS and Algebra**

Write the expression 4xy \times 9y - 13 \times xy^2 in its simplest form.

**[3 marks]**

**Step 1:** There are two multiplications in this expression, so it doesn’t matter which order we do them in providing we do them both before the subtraction. The first one becomes:

4xy \times 9y = 4 \times 9 \times x \times y \times y = 36xy^2

**Step 2:** The second multiplication becomes:

13 \times xy^2 = 13xy^2

**Step 3:** So, now we subtract the second from the first one, to get the expression in its simplest form.

36xy^2 - 13xy^2 = 23xy^2

Level 1-3 GCSE KS3## Example Questions

**Question 1:** Calculate the value of (2 \times 3^3) \div (15 - 9).

**[2 marks]**

Mathematical operators must be carried out in the correct order. The acronym **BIDMAS** (or **BODMAS**) is a helpful way to remember this order.

There are two brackets (B) to first calculate,

(2 \times 3^3) and (15-9)

Inside the first bracket, there is a power or index number (I or O),

2 \times 3^3 = 2 \times 27

Carry out any divisions or multiplications (DM) then additions or subtractions (AM) inside the brackets,

(2 \times 27 = 54) and (15-9 = 6)

Complete the calculation,

\begin{aligned} 54 \div 6 &= 9 \\ (2 \times 3^3) \div (15 - 9) &= 9 \end{aligned}

**Question 2:** Calculate the value of 16 \times (12\div 4)^2 .

**[2 marks]**

The first operation to consider following BIDMAS is the calculation inside the brackets (B),

12 \div 4 = 3

As this does not simplify we can move onto the indices (I),

(3)^2 = 9

Again as this does not simplify, the last operation of the expression is multiplication (M), and we get

16\times 9= 144

**Question 3:** Calculate the value of \dfrac{(x^2+3)}{(10-6)} when x=-3.

**[3 marks]**

The first operation to consider following BIDMAS is the calculation inside the brackets (**B**) dealing with the numerator and denominator separately for the moment.

In the numerator, we have to first, substitute in the given value of x and apply the power (**I**), before the addition (**A**).

((-3)^2+3)=(9+3)=12

In the denominator, there are no indices nor any multiplications divisions to consider so we can move straight to the subtraction (**S**),

(10-6) = 4

The last operation of the expression is a division (**D**), so,

\dfrac{12}{4}=3

**Question 4:** Write the expression (y^2 + 5y^2) - 3y \times 7y in its simplest form.

**[3 marks]**

The first operation to consider following BIDMAS is the calculation inside the brackets (**B**),

y^2 + 5y^2 = 6y^2

There are no indices or divisions in this expression, but there is a multiplication (**M**),

3y \times 7y = 21y^2

The last operation of the expression is subtraction (**S**), and we get,

6y^2 - 21y^2 = -15y^2

**Question 5:** Write the expression \dfrac{42q^2 \times pq}{28p^3 \div (9p - 5p)} in its simplest form.

**[4 marks]**

The first operation to consider following BIDMAS is the calculation inside the brackets (**B**) dealing with the numerator and denominator separately for the moment.

In the numerator, there is only one operation in the form of multiplication (**M**), so

42q^2 \times pq = 42q^2 \times q \times p = 42q^{3}p

In the denominator, the first calculation is inside the brackets (**B**), which is a substitution (**S**),

9p - 5p = 4p

Then, the division (**D**) operator can be applied,

28p^3 \div 4p = 7p^2

So, we are left with a fraction with p on the top and bottom, as well as a factor of 7. Both of these cancel so,

\dfrac{42q^{3}p}{7p^2}=\dfrac{6q^3}{p}

As there are no more common factors, we can not simplify the expression any further.

## Worksheet and Example Questions

### (NEW) BIDMAS /BODMAS - Exam Style Questions - MME

Level 1-3 GCSENewOfficial MME## Drill Questions

### BIDMAS and Prime Factors (Drill Questions)

Level 1-3 GCSE## You May Also Like...

### GCSE Maths Revision Cards

Revise for your GCSE maths exam using the most comprehensive maths revision cards available. These GCSE Maths revision cards are relevant for all major exam boards including AQA, OCR, Edexcel and WJEC.

### GCSE Maths Revision Guide

The MME GCSE maths revision guide covers the entire GCSE maths course with easy to understand examples, explanations and plenty of exam style questions. We also provide a separate answer book to make checking your answers easier!

### GCSE Maths Predicted Papers 2022 (Advance Information)

GCSE Maths 2022 Predicted Papers are perfect for preparing for your 2022 Maths exams. These papers have been designed based on the new topic lists (Advance Information) released by exam boards in February 2022! They are only available on MME!

### Level 9 GCSE Maths Papers 2022 (Advance Information)

Level 9 GCSE Maths Papers 2022 are designed for students who want to achieve the top grades in their GCSE Maths exam. Using the information released in February 2022, the questions have been specifically tailored to include the type of level 9 questions that will appear in this year's exams.