# Circle Graphs and Tangents Worksheets, Questions and Revision

GCSE 8 - 9AQAEdexcelOCRWJECHigherAQA 2022Edexcel 2022OCR 2022WJEC 2022

## Circle Graphs and Tangents

Circle graphs are another type of graph you need to know about. Questions involving circle graphs are some of the hardest on the course.

You need to be able to plot them as well as calculate the equation of tangents to them.

Make sure you are happy with the following topics

Level 8-9 GCSE

## What are Circle Graphs?

Circle graphs for a circle, have the general equation

$\textcolor{red}{x}^2 + \textcolor{limegreen}{y}^2 = \textcolor{blue}{r}^2$

e.g:

$\textcolor{red}{x}^2 + \textcolor{limegreen}{y}^2 = \textcolor{blue}{4}^2$

which is the same as

$\textcolor{red}{x}^2 + \textcolor{limegreen}{y}^2 = \textcolor{blue}{16}$

Remember: $r$ is the radius of the circle formed around centre $(0,0)$

Level 6-7 GCSE

## Finding the Equation of a Tangent

This is the most typical exam question you will face, if you learn the steps it really isn’t as tricky as it seems.

Example: Find the equation of the tangent to the circle defined by

$x^2 + y^2 = \textcolor{red}{25}$

at the point $(3, 4)$, shown on the axes below.

Firstly, we can recognise that because $\textcolor{red}{5^2} = \textcolor{red}{25}$, the radius of this circle is $\textcolor{red}{5}$.

We need to find the gradient of the radius which goes from the centre of the circle to the point $(3,4)$.

The tangent is perpendicular to the radius at that point (one of our circle theorems), meaning you can obtain the gradient of the perpendicular by taking the negative reciprocal of it.

So, the gradient of the line that goes from the origin to $(3,4)$ is

\begin{aligned} \text{Gradient } &= \dfrac{\text{change in } y}{\text{change in }x} \\ &= \dfrac{4 - 0}{3 - 0} \\ &= \dfrac{4}{3} \end{aligned}

Step 2: Find the gradient of the Tangent.

Taking the negative reciprocal of this, we get

$\text{Gradient of tangent } = \textcolor{blue}{-\dfrac{3}{4}}$

Step 3: Complete the rest of the equation.

Now we know the gradient, our straight-line equation must be $y = \textcolor{blue}{-\frac{3}{4}}x + c$, where $c$ is the $y$-intercept that we are yet to determine.

We know that this tangent passes through the point $(3,4)$, so we can substitute these values of $x$ and $y$ into our straight-line equation and rearrange to find $c$. We get:

$4 = \textcolor{blue}{-\dfrac{3}{4}} \times 3 + c$

$4 = -\dfrac{9}{4} + c$

$\textcolor{limegreen}{c} = 4 + \dfrac{9}{4} = \textcolor{limegreen}{\dfrac{25}{4}}$

Now we’ve found $c$, we can express our equation of our tangent fully:

$y = \textcolor{blue}{-\dfrac{3}{4}}x + \textcolor{limegreen}{\dfrac{25}{4}}$

Level 8-9GCSE

## Example Questions

We can see that the radius of this circle extends a distance of $10$ away from the centre at $(0,0)$. Therefore, because $10^2 = 100$, the equation of the circle is

$x^2 + y^2 = 100$

First, we need to find the gradient of the line from the centre to $(12, 5)$.

$\text{Gradient of radius } = \dfrac{\text{change in } y}{\text{change in }x} = \dfrac{5 - 0}{12 - 0} = \dfrac{5}{12}$

Now, by observing that this line is a radius, and that tangents are perpendicular to the radius, we can find the gradient of the tangent by taking the negative reciprocal of the answer we got above.

$\text{Gradient of tangent } = -\dfrac{12}{5}$

So, we know the straight-line equation for our tangent must be of the form

$y = -\dfrac{12}{5}x + c$,

where $c$ is the y-intercept which we must determine. To do this, we can substitute the values of $x = 12$ and $y = 5$ into the straight-line equation, since we know the line must pass through those coordinates. We get the following.

$5 = -\dfrac{12}{5} \times 12 + c$

$5 = -\dfrac{144}{5} + c$

$c = 5 + \dfrac{144}{5} = \dfrac{169}{5}$

$y = -\dfrac{12}{5}x + \dfrac{169}{5}$

First, we need to find the gradient of the line from the centre to $(-8, -7)$.

$\text{Gradient of radius } = \dfrac{\text{change in } y}{\text{change in }x} = \dfrac{-7 - 0}{-8 - 0} = \dfrac{7}{8}$

Now, by observing that this line is a radius, and that tangents are perpendicular to the radius, we can find the gradient of the tangent by taking the negative reciprocal of the answer we got above.

$\text{Gradient of tangent } = -\dfrac{8}{7}$

So, we know the straight-line equation for our tangent must be of the form

$y = -\dfrac{8}{7}x + c$,

where $c$ is the y-intercept which we must determine. To do this, we can substitute the values of $x = -8$ and $y = -7$ into the straight-line equation, since we know the line must pass through those coordinates. We get the following.

$-7 =-\dfrac{8}{7} \times -8 + c$

$-7 = \dfrac{64}{7} + c$

$c=-\dfrac{113}{7}$

$y = -\dfrac{8}{7}x -\dfrac{113}{7}$

## Related Topics

#### Perpendicular Lines

Level 4-5Level 6-7GCSE

Level 1-3GCSEKS3

Level 8-9GCSE

Level 4-5GCSEKS3

Level 4-5GCSEKS3

## Worksheet and Example Questions

### (NEW) Circle Graphs and Tangents Exam Style Questions - MME

Level 8-9 GCSENewOfficial MME

Level 8-9 GCSE

Level 8-9 GCSE

## You May Also Like...

### GCSE Maths Revision Cards

Revise for your GCSE maths exam using the most comprehensive maths revision cards available. These GCSE Maths revision cards are relevant for all major exam boards including AQA, OCR, Edexcel and WJEC.

£8.99

### GCSE Maths Revision Guide

The MME GCSE maths revision guide covers the entire GCSE maths course with easy to understand examples, explanations and plenty of exam style questions. We also provide a separate answer book to make checking your answers easier!

From: £14.99

### Transition Maths Cards

The transition maths cards are a perfect way to cover the higher level topics from GCSE whilst being introduced to new A level maths topics to help you prepare for year 12. Your ideal guide to getting started with A level maths!

£8.99