Column Vectors Revision and worksheets
Column Vectors Revision and worksheets
Column Vectors
A vector is something that has both a magnitude and direction. On diagrams they are denoted by an arrow, where the length tells us the magnitude and the arrow tells us the direction.
Vectors are often split up into two parts, which we call components: An x component, which moves left or right, and a y component, which moves up or down.
Make sure you are happy with the following topics before continuing:
What are Column Vectors?
A column vector splits the x and the y direction up, with x on top and y on bottom.
\begin{pmatrix}x\\y \end{pmatrix}
e.g. the vector \mathbf{a} goes 3 spaces to the right and 2 spaces up, so would be expressed as \begin{pmatrix}3\\2 \end{pmatrix}.
Adding and subtracting column vectors.
To add/subtract column vectors, we add/subtract the x and y values separately.
\begin{pmatrix}a\\b \end{pmatrix} + \begin{pmatrix}c\\d \end{pmatrix} = \begin{pmatrix}a + c\\b + d \end{pmatrix}
For example:
\begin{pmatrix}-3\\4\end{pmatrix}+\begin{pmatrix}5\\2\end{pmatrix}=\begin{pmatrix}2\\6\end{pmatrix}
\begin{pmatrix}6\\3\end{pmatrix}-\begin{pmatrix}2\\1\end{pmatrix}=\begin{pmatrix}4\\2\end{pmatrix}
Level 4-5 GCSEMultiplying Column Vectors.
To multiply a column vector by a number, we multiply both values in the vector by that number, e.g.
5\times\begin{pmatrix}2\\-3\end{pmatrix}=\begin{pmatrix}10\\-15\end{pmatrix}
Level 4-5 GCSEExample Questions
Question 1: Let \mathbf{a}=\begin{pmatrix}3\\8\end{pmatrix} and \mathbf{b}=\begin{pmatrix}-7\\2\end{pmatrix} Write 2\mathbf{a}+\mathbf{b} as a column vector.
[2 marks]
Firstly, to multiply \mathbf{a} by 2, we must multiply both of its components by 2:
2\mathbf{a}=2\times\begin{pmatrix}3\\8\end{pmatrix}=\begin{pmatrix}6\\16\end{pmatrix}
Then, to add this to \mathbf{b}, we must add the x values and y values separately. Doing so, we get the answer to be:
2\mathbf{a}+\mathbf{b}=\begin{pmatrix}6\\16\end{pmatrix}+\begin{pmatrix}-7\\2\end{pmatrix}=\begin{pmatrix}-1\\18\end{pmatrix}
Question 2: Let \mathbf{a}=\begin{pmatrix}2\\7\end{pmatrix} and \mathbf{b}=\begin{pmatrix}-5\\3\end{pmatrix}. Write 3\mathbf{a}-2\mathbf{b} as a column vector.
[2 marks]
Firstly, to multiply \mathbf{a} by 3, we must multiply both of its components:
3\mathbf{a}=3\times\begin{pmatrix}2\\7\end{pmatrix}=\begin{pmatrix}6\\21\end{pmatrix}
Then, in order subtract 2\mathbf{b}, we must first multiply \mathbf{b} by 2.
2\mathbf{b}=2\times\begin{pmatrix}-5\\3\end{pmatrix}=\begin{pmatrix}-10\\6\end{pmatrix}
Thus the calculation is:
3\mathbf{a}-2\mathbf{b}=\begin{pmatrix}6\\21\end{pmatrix}-\begin{pmatrix}-10\\6\end{pmatrix}=\begin{pmatrix}16\\15\end{pmatrix}
Question 3: Let \mathbf{a}=\begin{pmatrix}6\\2\end{pmatrix} and \mathbf{b}=\begin{pmatrix}5\\-3\end{pmatrix} and \mathbf{c}=\begin{pmatrix}2\\1\end{pmatrix}. Write \mathbf{a}+2\mathbf{b}-\mathbf{c} as a column vector.
[2 marks]
Firstly, to multiply \mathbf{b} by 2, we must multiply both of its components:
2\mathbf{b}=2\times\begin{pmatrix}5\\-3\end{pmatrix}=\begin{pmatrix}10\\-6\end{pmatrix}
Then, we can add \mathbf{a} and 2\mathbf{b}:
\mathbf{a}+2\mathbf{b}=\begin{pmatrix}6\\2\end{pmatrix}+\begin{pmatrix}10\\-6\end{pmatrix}=\begin{pmatrix}16\\-4\end{pmatrix}
The final calculation is to subtract \mathbf{c}:
\mathbf{a}+2\mathbf{b}-\mathbf{c}=\begin{pmatrix}16\\-4\end{pmatrix}-\begin{pmatrix}2\\1\end{pmatrix} = \begin{pmatrix}14\\-5\end{pmatrix}
Worksheet and Example Questions
(NEW) Column Vectors Exam Style Questions - MMe
Level 4-5 GCSENewOfficial MMEYou May Also Like...
GCSE Maths Revision Cards
Revise for your GCSE maths exam using the most comprehensive maths revision cards available. These GCSE Maths revision cards are relevant for all major exam boards including AQA, OCR, Edexcel and WJEC.
GCSE Maths Revision Guide
The MME GCSE maths revision guide covers the entire GCSE maths course with easy to understand examples, explanations and plenty of exam style questions. We also provide a separate answer book to make checking your answers easier!