Column Vectors Revision and worksheets | Maths Made Easy

Column Vectors Revision and worksheets

Level 4-5

Column Vectors

A vector is something that has both a magnitude and direction. On diagrams they are denoted by an arrow, where the length tells us the magnitude and the arrow tells us the direction. 

Vectors are often split up into two parts, which we call components: An x component, which moves left or right, and a y component, which moves up or down.

Make sure you are happy with the following topics before continuing:

Level 4-5

What are Column Vectors?

A column vector splits the x and the y direction up, with x on top and y on bottom.

\begin{pmatrix}x\\y \end{pmatrix}

e.g. the vector \mathbf{a} goes 3 spaces to the right and 2 spaces up, so would be expressed as \begin{pmatrix}3\\2 \end{pmatrix}

Column Vectors Diagram
Column Vectors Diagram
Level 4-5

Adding and subtracting column vectors. 

To add/subtract column vectors, we add/subtract the x and y values separately.

\begin{pmatrix}a\\b \end{pmatrix} + \begin{pmatrix}c\\d \end{pmatrix} = \begin{pmatrix}a + c\\b + d \end{pmatrix}

For example:



Level 4-5

Multiplying Column Vectors. 

To multiply a column vector by a number, we multiply both values in the vector by that number, e.g.


Level 4-5

GCSE Maths Revision Cards

(242 Reviews) £8.99
View Buy this product on Amazon

Take an Online Exam

Column Vectors Online Exam

Example Questions

Firstly, to multiply \mathbf{a} by 2, we must multiply both of its components by 2:




Then, to add this to \mathbf{b}, we must add the x values and y values separately. Doing so, we get the answer to be:



Firstly, to multiply \mathbf{a} by 3, we must multiply both of its components:




Then, in order subtract 2\mathbf{b}, we must first multiply \mathbf{b} by 2




Thus the calculation is:


Firstly, to multiply \mathbf{b} by 2, we must multiply both of its components:




Then, we can add \mathbf{a}  and  2\mathbf{b}:




The final calculation is to subtract \mathbf{c}:


\mathbf{a}+2\mathbf{b}-\mathbf{c}=\begin{pmatrix}16\\-4\end{pmatrix}-\begin{pmatrix}2\\1\end{pmatrix} = \begin{pmatrix}14\\-5\end{pmatrix}

Worksheets and Exam Questions


(NEW) Column Vectors Exam Style Questions - MMe

Level 4-5 New Official MME