Factorising | Questions, Worksheets and Revision
Factorising | Questions, Worksheets and Revision
Factorising into Single Brackets
Factorising is putting expressions into brackets, this is the reverse of expanding brackets.
Make sure you are happy with the following topics before continuing.
Factorising into single brackets – 3 Key steps
Example:
Fully factorise the following:
\textcolor{red}{12}\textcolor{limegreen}{x^2} +\textcolor{red}{8}\textcolor{limegreen}{x}
Step 1 – Take out the largest common factor of both the numbers, and place it in front of the brackets.
Factors of \textcolor{red}{12} are 1, 2, 3, \textcolor{blue}{4}, 6, 12
Factors of \textcolor{red}{8} are 1, 2, \textcolor{blue}{4}, 8
The largest common factor is \bf{\textcolor{blue}{4}}
\textcolor{red}{12} = \textcolor{blue}{4} \times \textcolor{purple}{3}
\textcolor{red}{8} = \textcolor{blue}{4} \times \textcolor{purple}{2}
Step 2 – Take out the highest power of the “Letter” which is a part of every term.
\begin{aligned}\textcolor{red}{12}\textcolor{limegreen}{x^2} = & \textcolor{red}{12} \times \textcolor{limegreen}{x} \times \xcancel{\textcolor{limegreen}{x}}\\ \textcolor{red}{8}\textcolor{limegreen}{x} = & \textcolor{red}{8} \times \xcancel{\textcolor{limegreen}{x}}\end{aligned}
We can take out one \textcolor{limegreen}{x} from each term, placing in front of the brackets.
Step 3 – Place the highest factor and highest power of the letter in front of the bracket, then add the remaining terms inside the bracket
\textcolor{blue}{4}\textcolor{limegreen}{x}(\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,)
\textcolor{blue}{4}\textcolor{limegreen}{x}(\textcolor{purple}{3}\textcolor{limegreen}{x} +\textcolor{purple}{2})
To check, you can multiply the bracket back out to see if you have the right answer.
4x(3x+2) = 12x^2 +8x
Level 4-5 GCSE KS3Example 1: Factorising Two Terms
Fully Factorise the following, \textcolor{red}{3}\textcolor{limegreen}{x}\textcolor{Orange}{y} + \textcolor{red}{6}\textcolor{limegreen}{x^2}.
[2 marks]
Step 1 – Take out the largest common factor of both the numbers, and place it in front of the brackets.
Factors of \textcolor{red}{3} are 1, \textcolor{blue}{3}
Factors of \textcolor{red}{6} are 1, 2, \textcolor{blue}{3}, 6
The largest common factor is \bf{\textcolor{blue}{3}}
\textcolor{red}{3} = \textcolor{blue}{3} \times \textcolor{purple}{1}
\textcolor{red}{6} = \textcolor{blue}{3} \times \textcolor{purple}{2}
Step 2 – Take out the highest power of the “Letter” which is a part of every term.
\begin{aligned}\textcolor{red}{3}\textcolor{limegreen}{x}\textcolor{Orange}{y} = & \textcolor{red}{3} \times \xcancel{\textcolor{limegreen}{x}} \times \textcolor{orange}{y}\\ \textcolor{red}{6}\textcolor{limegreen}{x^2} = & \textcolor{red}{6} \times \textcolor{limegreen}{x} \times \xcancel{\textcolor{limegreen}{x}}\end{aligned}
We can take out one \textcolor{limegreen}{x} from each term, placing it in front of the brackets.
Step 3 – Place the highest factor and highest letter in front of the bracket, then add the remaining terms inside the bracket
\textcolor{blue}{3}\textcolor{limegreen}{x}(\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,)
\textcolor{blue}{3}\textcolor{limegreen}{x}(\textcolor{orange}{y} +\textcolor{purple}{2}\textcolor{limegreen}{x})
To check you can multiply the bracket back out to see if you have the right answer.
3x(y+2x) = 3xy+6x^2
Level 4-5 GCSE KS3Example 2: Factorising with three terms
Fully factorise the following, \textcolor{red}{8}\textcolor{limegreen}{x}\textcolor{Orange}{y} + \textcolor{red}{12}\textcolor{limegreen}{x^2}\textcolor{Orange}{y} - \textcolor{red}{4}\textcolor{limegreen}{x^2}\textcolor{Orange}{y^2}.
[3 marks]
Step 1 – Take out the largest common factor of all of the numbers, and place it in front of the brackets.
Factors of \textcolor{red}{8} are 1, 2, \textcolor{blue}{4}, 8
Factors of \textcolor{red}{12} are 1, 2, 3, \textcolor{blue}{4}, 6, 12
Factors of \textcolor{red}{4} are 1, 2, \textcolor{blue}{4}
The highest common factor of all three is \textcolor{blue}{4}
\textcolor{red}{8} = \textcolor{blue}{4} \times \textcolor{purple}{2}
\textcolor{red}{12} = \textcolor{blue}{4} \times \textcolor{purple}{3}
\textcolor{red}{4}= \textcolor{blue}{4} \times \textcolor{purple}{1}
Step 2 – Take out the highest power of the “Letter” which is a part of every term.
\begin{aligned}\textcolor{red}{8}\textcolor{limegreen}{x}\textcolor{Orange}{y} = & \textcolor{red}{8} \times \xcancel{\textcolor{limegreen}{x}} \times \xcancel{\textcolor{Orange}{y}}\\ \textcolor{red}{12}\textcolor{limegreen}{x^2}\textcolor{Orange}{y} = & \textcolor{red}{12} \times \xcancel{\textcolor{limegreen}{x}} \times\textcolor{limegreen}{x} \times \xcancel{\textcolor{Orange}{y}} \\ \textcolor{red}{4}\textcolor{limegreen}{x^2}\textcolor{Orange}{y^2} = & \textcolor{red}{4} \times \xcancel{\textcolor{limegreen}{x}} \times \textcolor{limegreen}{x} \times \xcancel{\textcolor{Orange}{y}} \times \textcolor{Orange}{y} \end{aligned}
We can take out one \textcolor{limegreen}{x} and one \textcolor{Orange}{y} from each term.
Step 3 – Place the highest factor and highest letter in front of the bracket, then add the remaining terms inside the bracket.
\textcolor{blue}{4}\textcolor{limegreen}{x}\textcolor{Orange}{y}(\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,)
\textcolor{blue}{4}\textcolor{limegreen}{x}\textcolor{Orange}{y}(\textcolor{purple}{2} + \textcolor{purple}{3}\textcolor{limegreen}{x} - \textcolor{limegreen}{x}\textcolor{Orange}{y})
To check you can multiply the bracket back out to see if you have the right answer.
4xy(2 + 3x-xy) = 8xy + 12x^2y-4x^2y^2
Level 4-5 GCSEExample Questions
Question 1: Factorise fully 10pq + 15pqr
[2 marks]
Take out a factor of 5 from both terms to get
5(2pq + 3pqr)
There is both a p and a q in the two terms inside the bracket. Taking out both p and q, we get
5pq(2 + 3r)
The two numbers in the bracket have nothing more in common so we are done.
Question 2: Factorise fully u^3+3uv^3+2u
[2 marks]
Take out a factor of u from both terms to get,
u(u^2+3v^3+2)
The terms inside the bracket have no more common factors, so we are done.
Question 3: Factorise fully 4xy^5 + y^5 + 12y^7
[2 marks]
The first and last term have a factor of 4 in common, but the middle term doesn’t, so we can’t take any numbers out as factors.
All 3 terms have a factor of y in them. Specifically, the highest power of y that all 3 terms have in common is y^5. Taking y^5 out as a factor, we get,
y^5(4x + 1 + 12y^2)
The terms in the bracket have no more common factors, so we are done.
Question 4: Factorise fully 5xy^2-5x^2y-5x^2y^2
[3 marks]
Take out a factor of 5 from every term to get
5(xy^2-x^2y-x^2y^2)
Now, clearly each term has a factor of x and y, so we just need to determine what the highest power of each factor we can take out is,
5xy(y-x-xy)
The terms inside the bracket have no more common factors, so we are done.
Question 5: Factorise fully 7abc + 14a^{2}bc + 21ab^{2}c + 49abc^3
[3 marks]
Take out a factor of 7 from every term to get
7(abc + 2a^{2}bc + 3ab^{2}c + 7abc^3)
Now, clearly each term has a factor of a, b, and c, so we just need to determine what the highest power of each factor we can take out is.
The first term only has the three factors a, b, and c to the power of 1 (note that we don’t write the power of 1 since x^1 = x), which means that this is the highest power of each factor we can take out is 1. Taking out a factor of a, b, and c, we get
7abc(1 + 2a + 3b + 7c^2)
The terms inside the bracket have no more common factors, so we are done.
Worksheet and Example Questions
(NEW) Factorising (Foundation) Exam Style Questions - MME
Level 4-5 GCSENewOfficial MMEDrill Questions
Algebra Expand And Factorise - Drill Questions
Level 4-5 GCSEYou May Also Like...
GCSE Maths Revision Cards
Revise for your GCSE maths exam using the most comprehensive maths revision cards available. These GCSE Maths revision cards are relevant for all major exam boards including AQA, OCR, Edexcel and WJEC.
GCSE Maths Revision Guide
The MME GCSE maths revision guide covers the entire GCSE maths course with easy to understand examples, explanations and plenty of exam style questions. We also provide a separate answer book to make checking your answers easier!