 GCSE Maths Equations | Formulae to Learn | MME

### GCSE Maths Equations to memorise

GCSE Maths Equations to memorise Z-Card is our full list of the maths formulae you need to learn for your GCSE exam. Whether you are doing AQA, Edexcel or OCR, the following list of maths equations are relevant to you.

or ## Algebra

 Higher Only

 The quadratic formula The solutions for $\textcolor{blue}{a}x^2+\textcolor{red}{b}x+\textcolor{Orange}{c}=0$ Solutions are given $x=\dfrac{-\textcolor{red}{b}\pm\sqrt{\textcolor{red}{b}^2-4\textcolor{blue}{a}\textcolor{Orange}{c}}}{2\textcolor{blue}{a}}$ Direct proportionality: ($y$ is proportional to $x$, $x^2$) $y \propto x \rightarrow y = \textcolor{blue}{k}x$ $y \propto x^2 \rightarrow y = \textcolor{blue}{k}x^2$ Indirect proportionality: ($y$ is inversely proportional to $x$, $x^2$) $y \propto \dfrac{1}{x} \rightarrow y = \dfrac{\textcolor{blue}{k}}{x}$ $y \propto \dfrac{1}{x^2} \rightarrow y = \dfrac{\textcolor{blue}{k}}{x^2}$

## Compound measures

 $\text{Speed (s)} = \dfrac{\text{distance (d)}}{\text{time (t)}}$ $\text{Density (d)} = \dfrac{\text{mass (m)}}{\text{volume (V)}}$ $\text{Pressure (p)} = \dfrac{\text{force (F)}}{\text{area (A)}}$ ## Geometry

 Area of a rectangle $=l \times w$ Area of a triangle $=\dfrac{1}{2} b \times h$ Area of a Parallelogram $= b \times h$ Area of a Trapezium $= \dfrac{1}{2}(a + b) \times h$ Sum of interior angles for a regular polygon $= (\text{number of sides} – 2) × 180$ Interior angle of a regular polygon $=\dfrac{(\text{number of sides} – 2) \times 180}{\text{number of sides}}$ Exterior angle of a regular polygon $=\dfrac{360}{\text{number of sides}}$

### GCSE Maths Equations to memorise    ## Volumes

 Higher Only

 Volume of a cuboid $=\text{ length }\times\text{ width }\times\text{ height}$ Volume of a prism $=\text{ area of cross section }\times{ length}$ Volume of a cylinder $=\pi r^2 h$ Volume of a pyramid $=\dfrac{1}{3}\times\text{ area of base }\times\text{ vertical height }$ ## Pythagoras and Trigonometry

 Higher Only

 Pythagoras’ theorem: $a^2 +b^2 = c^2$ $\sin(x) = \dfrac{\text{opp}}{\text{hyp}}\,\,\,\,$ $\cos(x) = \dfrac{\text{adj}}{\text{hyp}}\,\,\,\,$ $\tan(x) = \dfrac{\text{opp}}{\text{adj}}$ Sine Rule: $\dfrac{\textcolor{limegreen}{a}}{\sin \textcolor{limegreen}{A}}=\dfrac{\textcolor{blue}{b}}{\sin \textcolor{blue}{B}}=\dfrac{\textcolor{red}{c}}{\sin \textcolor{red}{C}}$ Cosine Rule: $\textcolor{limegreen}{a}^2=\textcolor{blue}{b}^2+\textcolor{red}{c}^2-2\textcolor{blue}{b}\textcolor{red}{c}\cos \textcolor{limegreen}{A}$ or $\cos(\textcolor{limegreen}{A}) = \dfrac{\textcolor{blue}{b}^2+\textcolor{blue}{c}^2 - \textcolor{limegreen}{a}^2}{2\textcolor{blue}{b}\textcolor{red}{c}}$ Area of a triangle: $\dfrac{1}{2}ab\sin(C)$
 Trigonometry common values: ## Probability and more

 Higher Only

 Compound interest: $\text{New value} = \text{original}\times \bigg(1 +\dfrac{\text{percentage}}{100} \bigg)^{\text{time}}$ Depreciation: $\text{New value} = \text{original}\times \bigg(1 -\dfrac{\text{percentage}}{100} \bigg)^{\text{time}}$ Percentage of amount: $= \text{Percentage} = \dfrac{\text{amount}}{total} \times 100$ Percentage change: $= \dfrac{\text{new group} - \text{original}}{\text{original}} \times 100$ Histograms $= \dfrac{\text{frequency}}{\text{class width}}$

### Try a revision card

Try a revision card on this topic.  ### Learning resources you may be interested in

We have a range of learning resources to compliment our website content perfectly. Check them out below.