Solving Inequalities

Solving Inequalities

GCSE 4 - 5AQAEdexcelOCRWJECFoundationEdexcel 2022OCR 2022WJEC 2022

Solving Inequalities

Inequalities are not always presented to us in a straight forward way. More often than not, they’re all jumbled up – like equations often are – and therefore they need to be rearranged and solved.

Make sure you are happy with the following topics before continuing.

Level 4-5 GCSE AQA Edexcel OCR WJEC

Type 1: Listing values

x is an integer such that -1\leq x \lt 4. List all numbers that satisfy this inequality.

For such questions you need consider if the inequalities are inclusive or strict, in this case we have,

x takes any value greater then or equal to -1       and        x takes any value less than 4

Hence, the integers that satisfy the inequality are: -1,0,1,2,3

Level 4-5 GCSE AQA Edexcel OCR WJEC

Type 2: Solving Inequalities Basic

Solve the inequality 5a - 4 > 2a + 8

Firstly, add 4 to both sides of the inequality to get,

\begin{aligned}(\textcolor{maroon}{+2})\,\,\,\,\,\,\,\,\, 5a -4 &\gt 2a+8 \\ 5a &\gt 2a+12 \end{aligned}

Then, subtract 2a from both sides to get,

\begin{aligned}(\textcolor{maroon}{-2a})\,\,\,\,\,\,\,\,\, 5a &\gt 2a+12  \\ 3a &\gt 12 \end{aligned}

Finally, divide both sides by 3 to get,

\begin{aligned}(\textcolor{maroon}{\div 3})\,\,\,\,\,\,\,\,\, 3a &\gt 12 \\ a &\gt 4 \end{aligned}

Level 4-5 GCSE AQA Edexcel OCR WJEC
Level 4-5 GCSE AQA Edexcel OCR WJEC

Type 3: Solving Inequalities 2 signs

Solve the inequality 5 \lt 2x-3 \lt  13

Firstly, add 3 to each side of the inequality,

(Remember what you do to one side you do to all sides,  even if there are 3 sides), to get

\begin{aligned}(\textcolor{maroon}{+3})\,\,\,\,\,\,\,\,\, 5& \lt 2x-3 \lt 13 \\ 8  &\lt 2x \lt 16 \end{aligned}

Finally, divide both sides by 2 to get,

\begin{aligned}(\textcolor{maroon}{\div 2})\,\,\,\,\,\,\,\,\, 8 \lt 2x&  \lt 16  \\ 4 \lt x& \lt 8 \end{aligned}

Level 4-5 GCSE AQA Edexcel OCR WJEC

Type 4: Multiplying and Dividing by a Negative Number 

When rearranging an inequality, you are performing the same operation to both sides of the inequality without changing it (just like as you would with an equation) but with one exception:

If you multiply or divide by a negative number, then the inequality sign changes direction

For example, if we have to solve the inequality -2x \gt 4, we have to divide both sides by -2,

\begin{aligned}(\textcolor{maroon}{\div -2})\,\,\,\,\,\,\,\,\, -2x &\gt 4 \\ x &\lt -2 \end{aligned}

Level 4-5 GCSE AQA Edexcel OCR WJEC
Level 4-5 GCSE AQA Edexcel OCR WJEC

Example

Solve the inequality \dfrac{4x+4}{2} > x

[3 marks]

We need to get rid of the fraction first by multiplying by 2

{4x+4} > 2x

Then subtract 4x

4 > -2x

Then divide by -2

-2 < x

Remember the sign changes direction when multiplying or dividing by a negative number.

Level 4-5 GCSE AQA Edexcel OCR WJEC

Example Questions

We solve this inequality by simply rearranging it to make k the subject,

 

 \begin{aligned}7 - 3k &> -5k + 12 \\ 7 +2k&> 12 \\  2k&>5 \\ k&>\dfrac{5}{2}\end{aligned}

 

Hence k can take any value greater than \dfrac{5}{2}

We solve this inequality by simply rearranging it to make x the subject,

 

 \begin{aligned}\dfrac{5x-1}{4} &> 3x \\ \\ 5x-1&> 12x \\  -1&>7x \\ x&<-\dfrac{1}{7}\end{aligned}

 

Hence k can take any value less than -\dfrac{1}{7}

We solve this inequality by simply rearranging it to make x  the subject,

 

 \begin{aligned}2x+5 &> 3x-2 \\ 7& > x \\ x&<7\end{aligned}

Hence x can take any value less than 7

We solve this inequality by simply rearranging it to make x the subject in the center of the inequality,

 

 \begin{aligned}4-3x&\leq19 \\ -3x&\leq 15 \\ 3x&\geq -15\\  x&\geq-5\end{aligned}

 

Hence x can take any value greater or equal to -5

We solve this inequality by simply rearranging it to make x the subject in the center of the inequality,

 

 \begin{aligned}-5<2x&-3<10 \\ -2<2x&<13 \\ \\ -1<x&<\frac{13}{2}\end{aligned}

 

Hence x can take any value greater than -1 and less than \dfrac{13}{2}

Related Topics

MME

Solving Equations

Level 4-5KS3
MME

Inequalities on a Number Line

Level 4-5KS3

Worksheet and Example Questions

Site Logo

(NEW) Solving Inequalities Exam Style Questions

Level 4-5 GCSENewOfficial MME

Drill Questions

Site Logo

Inequalities - Drill Questions

Level 4-5 GCSE
Site Logo

Algebra Inequalities - Drill Questions

Level 4-5 GCSE

You May Also Like...

GCSE Maths Revision Cards

Revise for your GCSE maths exam using the most comprehensive maths revision cards available. These GCSE Maths revision cards are relevant for all major exam boards including AQA, OCR, Edexcel and WJEC.

£8.99
View Product

GCSE Maths Revision Guide

The MME GCSE maths revision guide covers the entire GCSE maths course with easy to understand examples, explanations and plenty of exam style questions. We also provide a separate answer book to make checking your answers easier!

From: £14.99
View Product