 Stratified Sampling Questions | Worksheets and Revision | MME

# Stratified Sampling Questions, Worksheets and Revision

Level 6-7

## Stratified Sampling

Stratified sampling is a method we can use to make our sample more representative. Make sure you are happy with the following topics before continuing.

## Stratified Sampling

By separating the population into groups (age groups, genders, etc.) called strata, we can ensure that the number of people who will be sampled from each group is proportional to the number of people in that group overall.

We choose to use a stratified sample when there are significantly different numbers of people/things in each group.

You can calculate the number of people needed from each group using the following formula:

$\text{number to be sampled from group} = \dfrac{\text{\textcolor{blue}{number of people in group}}}{\text{\textcolor{limegreen}{size of population}}} \times \text{sample size}$ ## Example 1

The breakdown of ages of all visitors to a convention is given in the table below.

Fabine wants to take a stratified sample of the visitors at the convention.

She chooses a sample size of $80$.

Calculate how many people she will need to sample from each age group.

[4 marks]

Step 1: First, we need to establish how many people were at the convention. Adding up the numbers, we get

$\text{total population }=132+678+543+289+108=1,750$

Step 2: We must apply the formula shown above. The number she should sample from the $5$$15$ group is

$\dfrac{\textcolor{blue}{132}}{\textcolor{limegreen}{1,750}}\times 80=6.034...$

Then, for the $16$$25$ group: $\dfrac{\textcolor{blue}{678}}{\textcolor{limegreen}{1,750}}\times 80=30.994...$

The $26$$40$ group: $\dfrac{\textcolor{blue}{543}}{\textcolor{limegreen}{1,750}}\times 80 = 24.822...$

The $41$$60$ group: $\dfrac{\textcolor{blue}{289}}{\textcolor{limegreen}{1,750}}\times 80=13.211...$

Lastly, the $61+$ group: $\dfrac{\textcolor{blue}{108}}{\textcolor{limegreen}{1,750}}\times 80=4.937...$

Obviously, we can’t select decimal numbers of people, so we have to round all these values to the nearest whole number. Doing so, we get that the number of people to be sampled from each group (in order) is

$6,\,\,31,\,\,25,\,\,13,\,\,$ and $\,\,5$

Level 6-7

## Example 2

Odette has taken a stratified sample of people who work at her company based on gender. There are $500$ people at her company. The table below gives some information about sizes of the groups. Complete the table.

[3 marks]

We know there are $500$ people in the company, but not how many are in the sample. So, instead of using the formula, we’re going to consider the fact stated just above:

“the ratio of the groups in the sample must equal the ratio of the groups in the population” Step 1: Calculate the Scale factor

The values in the sample must all be scaled down by the same scale factor from the original values.

Given that there are $255$ females at the company and $51$ in the sample, we get

$\text{scale factor } = 255\div 51=5$

Step 2: Calculate using the scale factor.

We multiply the scale factor by the number of males in the sample

$\text{Number at company: male category } = 47\times 5 = 235\text{ people}$

Similarly, considering that the sample is $5$ times smaller than the population we get

$\text{Number in sample: other category }=10 \div 5= 2\text{ people}$

The completed table can be seen below. Level 6-7

### Example Questions

First of all, we need to calculate the total population.

$\text{Total population }=1,354+3,480+3,776+1,865+430=10,905$

We can use the formula to see how big our sample from each group should be (if you don’t like having to remember formulae, then use some maths logic by simply working out what percentage of the total population a particular income group represents, and then calculate this percentage of your sample size of $200$):

$\text{number to be sampled from group }=\dfrac{\text{number of people in group}}{\text{size of population}}\times \text{sample size}$

$\text{0 - 14,999 group: }\dfrac{1,354}{10,905}\times 200=24.832...=25 \text{ people}$

$\text{15,000 - 24,999 group: }\dfrac{3,480}{10,905}\times 200=63.823...=64 \text{ people}$

$\text{25,000 - 34,999 group: }\dfrac{3,776}{10,905}\times 200=69.252...=69 \text{ people}$

$\text{35,000 - 49,999 group: }\dfrac{1,865}{10,905}\times 200=34.204...=34 \text{ people}$

$\text{50,000 group: }\dfrac{430}{10,905}\times 200=7.886...=8 \text{ people}$

If you want to check that your calculations are correct, then add up the totals for each group and the total should be the desired total of $200$.

$25+64+69+34+8=200$

First of all, we need to calculate how many students there are in total:

$112+104+98+90+76 = 480\text{ students}$

If the house leader would like a stratified sample of $80$ students, then we can work this out as a fraction (or even percentage) of the whole student population:

$\dfrac{80}{480} = \dfrac{1}{6} \text{ or } 16.6\%$

(Seeing the sample as $\frac{1}{6}$ will be easier to manage than a difficult % amount.)

Since the house leader would like a stratified sample of $\frac{1}{6}$ of the whole school population, this means that she will need to survey $\frac{1}{6}$ of each year group. For each year group, the number of students to be surveyed per year group can be calculated as follows:

Year 7: $\dfrac{112}{6}=19\text{ students}$

Year 8: $\dfrac{104}{6}=17\text{ students}$

Year 9: $\dfrac{98}{6}=16\text{ students}$

Year 10: $\dfrac{90}{6}=15\text{ students}$

Year 11: $\dfrac{76}{6}=13\text{ students}$

We have been given complete information for the football club, and we can see that there are $196$ players in total, of which $28$ have been selected for the sample. In other words, $28$ out of $196$ are in the sample. We can write this as a fraction:

$\dfrac{28}{196}$

This fraction can be simplified to:

$\dfrac{1}{7}$

(If this is not an easy fraction for you to simplify, remember that the line of a fraction means ‘divide’, so if you type into your calculator $28\div196$ your calculator should give you the answer $\frac{1}{7}$.)

Therefore $\frac{1}{7}$ of the football club is included in the sample.

Since Michael is conducting a stratified sample, this means that he is taking a sample of $\frac{1}{7}$ from each category.

Since the rugby club has a total of $91$ members, the number included in the sample can be calculated as follows:

$\dfrac{91}{7} = 13\text{ players}$

For the basketball team, we have been given the sample size and not the total number of members in the club. Since the sample size is $\frac{1}{7}$ of the total, this means that $19$ basketball players = $\frac{1}{7}$ of the overall total. Therefore the total number of basketball players is:

$19\times7=133\text{ players}$

Therefore, the completed table should look like this: If we know that $81$ students represent $30\%$ of the entire sixth form, then we can work out how many students there are in total in the sixth form.

If

$30\% = 81\text{ students}$

then

$10\% = 81\div3 = 27\text{ students}$

so

$100\% = 27\times10=270\text{ students}$

Therefore, if there are $270$ students in the sixth form, of which $156$ are in year $12$, then we can easily work out the number of students in year $13$:

$270-156=114\text{ students}$

First of all, we need to calculate the entire student population. In total there are:

$212+200+192+186+170=960\text{ students}$

The head of maths would like a sample of $80$ students, so we can work out what fraction of the entire student population this represents, and simplify the fraction:

$\dfrac{80}{960} = \dfrac{1}{12}$

Therefore, for his stratified sample, he will need to survey $\frac{1}{12}$ of each year group.

We know that there is a total of $192$ students in year $9$, so the total number of students he needs to survey in year $9$ can be calculated as follows:

$\dfrac{192}{12} = 16\text{ students}$

However, the head of maths can’t simply survey $8$ boys and $8$ girls because he is also stratifying by gender as well as age.

We know that there are $192$ students in total in year $9$, of which $72$ are girls, so we need to work out how many boys there are:

$192-72=120\text{ boys}$

We now need to work out what fraction of the year group are boys. Since $120$ out of the $192$ students are boys, we can write this as a fraction, and simplify:

$\dfrac{120}{192} = \dfrac{5}{8}$

If $\frac{5}{8}$ of the year group are boys, this means that $\frac{5}{8}$ of the $16$ year $9$ students he plans to survey have to be boys.

$\dfrac{5}{8}\times16 = 10\text{ boys}$

Therefore, the head of maths needs to survey $10$ year $9$ boys.

### Worksheets and Exam Questions

#### (NEW) Stratified Sampling Revision Exam Style Questions

Level 4-5 New Official MME

Level 6-7

Level 1-3

### Learning resources you may be interested in

We have a range of learning resources to compliment our website content perfectly. Check them out below.