Surds Questions, Worksheets and Revision
Surds Questions, Worksheets and Revision
Surds
A surd is a square root number that doesn’t give a whole number answer, e.g. \sqrt{3}.
More generally, we get a surd when we take the square root of a number that isn’t a square number – so \sqrt{2},\sqrt{3},\sqrt{5} are all surds. There are 7 key skills you need to learn when manipulating surds.
This topic will require a good understanding of:
Skill 1: Multiplying Surds
When multiplying surds you simply multiply the numbers inside the square root.
\sqrt{\textcolor{red}{a}} \times \sqrt{\textcolor{blue}{b}} = \sqrt{\textcolor{red}{a}\times \textcolor{blue}{b}}
Example:
\sqrt{7} \times \sqrt{2} = \sqrt{7 \times 2} = \sqrt{14}
2\sqrt{2} \times 3\sqrt{5} = 2\times 3 \times \sqrt{2\times5} = 6\sqrt{10}
\sqrt{6}^2 = \sqrt{6} \times \sqrt{6} = \sqrt{6\times6} =\sqrt{36} = 6
Level 6-7 GCSESkill 2: Dividing Surds
When dividing surds you simply divide the numbers inside the square root.
\dfrac{\sqrt{\textcolor{red}{a}}}{\sqrt{\textcolor{blue}{b}}} = \sqrt{\dfrac{\textcolor{red}{a}}{\textcolor{blue}{b}}}
Example:
\dfrac{\sqrt{10}}{\sqrt{5}} = \sqrt{\dfrac{10}{5}} = \sqrt{2}
\dfrac{8\sqrt{12}}{2\sqrt{3}} = \dfrac{8}{2}\times\sqrt{\dfrac{12}{3}} = 4\times\sqrt{4} = 4\times 2 = 8
Level 6-7 GCSESkill 3: Adding and Subtracting Surds
It is only possible to add and subtract “like” surds, this is similar to collecting like terms
\sqrt{a} + \sqrt{a} = 2\sqrt{a}
5\sqrt{b} - 2\sqrt{b} = 3\sqrt{b}
Do NOT do this:
\xcancel{\sqrt{a} + \sqrt{b} = \sqrt{a+b}}
Level 6-7 GCSESkill 4: Simplifying Surds
Surds can be simplified if the number within the surd has a square number as one of its factors.
Example: Write \sqrt{28} in simplified surd form.
We need need to think of a square number which is a factor of 28.
28 = \textcolor{red}{4} \times 7
\sqrt{28}=\sqrt{4\times7}=\sqrt{\textcolor{red}{4}}\times\sqrt{7}
We know that \sqrt{\textcolor{red}{4}} = \textcolor{red}{2}
\sqrt{28}=\textcolor{red}{2}\times\sqrt{7}=\textcolor{red}{2}\sqrt{7}
Level 6-7 GCSESkill 5: Double brackets and surds
We can multiply out double brackets containing surds the same way as for quadratics using FOIL, then collect like terms.
(m+\sqrt{n}) (m+\sqrt{n})=\textcolor{red}{m^2}+\textcolor{limegreen}{m\sqrt{n}}+\textcolor{purple}{m\sqrt{n}}+\textcolor{blue}{n}\\ = \textcolor{red}{m^2}+\textcolor{maroon}{2m\sqrt{n}}+\textcolor{blue}{n}
Example:
\begin{aligned} &(\sqrt{10} + \sqrt{3})(\sqrt{10} - \sqrt{3}) \\ &= \sqrt{10}^2 - \sqrt{3}\sqrt{10} + \sqrt{3}\sqrt{10} - \sqrt{3}^2 \\ &= 10 -\sqrt{30} + \sqrt{30} -3 \\ &= 10 - 3 \\ &= 7 \end{aligned}
Level 6-7 GCSESkill 6: Rationalise the denominator – Simple
Rationalising the denominator just means removing the surd from the bottom of a fraction. There are two types of question you may encounter, one harder then the other. The first type is shown below.
Example: Rationalise the denominator of the following fraction \dfrac{\textcolor{red}{a}}{\sqrt{\textcolor{blue}{b}}}
Simply multiply the top and bottom of the fraction by the denominator of the fraction.
\dfrac{\textcolor{red}{a}}{\sqrt{\textcolor{blue}{b}}} = \dfrac{\textcolor{red}{a}}{\sqrt{\textcolor{blue}{b}}} \times \dfrac{\sqrt{\textcolor{blue}{b}}}{\sqrt{\textcolor{blue}{b}}} = \dfrac{\textcolor{red}{a}\sqrt{\textcolor{blue}{b}}}{\textcolor{blue}{b}}
Level 8-9 GCSESkill 7: Rationalise the denominator – Harder
Rationalising the denominator when there are other terms as well as the surd can be much more tricky.
Example: Rationalise the denominator of the following fraction \dfrac{\textcolor{red}{5}}{\textcolor{blue}{3+\sqrt{5}}}
Multiply the top and the bottom of the fraction by the denominator with the sign changed. + becomes - and - becomes +.
\begin{aligned} \dfrac{\textcolor{red}{5}}{\textcolor{blue}{3+\sqrt{5}}} &= \dfrac{\textcolor{red}{5}}{\textcolor{blue}{3+\sqrt{5}}} \times \dfrac{\textcolor{limegreen}{3-\sqrt{5}}}{\textcolor{limegreen}{3-\sqrt{5}}} \\ &= \dfrac{\textcolor{red}{5}\textcolor{limegreen}{(3-\sqrt{5})}}{\textcolor{blue}{(3+\sqrt{5})}\textcolor{limegreen}{(3-\sqrt{5})}} \\ &= \dfrac{15-5\sqrt{5}}{9-3\sqrt{5} + 3\sqrt{5} -5} \\ &= \dfrac{15-5\sqrt{5}}{9 - 5} \\ &= \dfrac{15-5\sqrt{5}}{4} \end{aligned}
Level 8-9 GCSEExample 1: Rationalising the Denominator
Rationalise the denominator of \dfrac{3}{\sqrt{5}}
[2 marks]
This would be Type 1 so we simply need to multiply the top and bottom of the fraction by the denominator of the fraction
\dfrac{3}{\sqrt{5}} \times \dfrac{\sqrt{5}}{\sqrt{5}} = \dfrac{3\sqrt{5}}{\sqrt{5}\sqrt{5}}
We know,
\sqrt{5}\sqrt{5} = \sqrt{25} = 5
So,
\dfrac{3\sqrt{5}}{\sqrt{5}\sqrt{5}} = \dfrac{3\sqrt{5}}{5}
The denominator no longer involves a surd, only a 5 – which is a rational number – and so we have successfully rationalised the denominator.
Level 6-7 GCSEExample 2: Rationalising Surds
Rationalise the denominator of the following fraction.
\dfrac{8}{5+\sqrt{2}}
[4 marks]
This is a Type 2 so we need to multiply the top and the bottom of the fraction by the denominator with the sign changed. + becomes - and - becomes +.
This means we must multiply by (5-\sqrt{2}). This is going to involve some bracket expanding. The numerator becomes
\dfrac{8}{5+\sqrt{2}} \times \dfrac{(5-\sqrt{2})}{(5-\sqrt{2})} = \dfrac{8(5-\sqrt{2})}{(5+\sqrt{2})(5-\sqrt{2})}
Now we need to multiply out the top and the bottom of the fraction, then simplify.
The Numerator:
8(5-\sqrt{2})=(8\times5)+(8\times(-\sqrt{2}))=40-8\sqrt{2}
The Denominator:
\begin{aligned}(5+\sqrt{2})(5-\sqrt{2})&=5^2-5\sqrt{2}+5\sqrt{2}-\sqrt{2}^2 \\ &=25-5\sqrt{2}+5\sqrt{2}- 2 \\ &= 25 -2 \\ &= 23 \end{aligned}
Therefore, we can now reform our fraction giving our final answer,
\dfrac{40-8\sqrt{2}}{23}
Level 8-9 GCSEExample Questions
Question 1: Write \sqrt{75} in simplified surd form.
[1 mark]
We are looking for a square number that goes into 75. There is one: 25. Specifically, 72=25\times3
Using the multiplication rule, we can write,
\sqrt{75}=\sqrt{3\times25}=\sqrt{3}\times\sqrt{25}
The square root of 25 is 5, so this becomes,
\sqrt{3}\times\sqrt{25}=\sqrt{3}\times5=5\sqrt{3}
Thus, the answer in simplified surd form is 5\sqrt{3}
Question 2: Write \sqrt{63} in simplified surd form.
[1 mark]
\sqrt{63}=\sqrt{9\times7}=\sqrt{9}\times\sqrt{7}=3\sqrt7
Question 3: Write \sqrt{\frac{3}{16}} in simplified surd form.
[2 marks]
Using, \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}, the expresion can be simplified to,
\sqrt{\dfrac{3}{16}}=\dfrac{\sqrt3}{\sqrt16}=\dfrac{\sqrt3}{4}
Question 4: Rationalise the denominator of the following fraction. Write your answer in its simplest form
\dfrac{12}{\sqrt{3}}
[2 marks]
We will multiply the top and bottom of this fraction by the surd on the bottom: \sqrt{3}
Doing so, we get,
\dfrac{12}{\sqrt{3}}=\dfrac{12\times\sqrt{3}}{\sqrt{3}\times\sqrt{3}}
The numerator is just 12\sqrt{3}. Using the multiplication rule, the denominator is
\sqrt{3}\times\sqrt{3}=\sqrt{3\times3}=\sqrt{9}=3
Therefore, the fraction is,
\dfrac{12\sqrt{3}}{3}
However, this is not in its simplest form. We can cancel a factor of 3 from the top and bottom and get,
\dfrac{12\sqrt{3}}{3}=\dfrac{4\sqrt{3}}{1}=4\sqrt{3}
Question 5: Rationalise the denominator of the following fraction. Write your answer in its simplest form.
\dfrac{7}{\sqrt{10}-1}
[4 marks]
We will multiply top and bottom of this fraction by (\sqrt{10}+1). So, the numerator becomes
7\times(\sqrt{10}+1)=7\sqrt{10}+7
Then, using FOIL, the denominator becomes
(\sqrt{10}-1)(\sqrt{10}+1)=\sqrt{10}\times\sqrt{10}+1\times\sqrt{10}-1\times\sqrt{10}-1\times1
Completing each multiplication, including applying the multiplication law to the first term, we get
\sqrt{10\times10}+\sqrt{10}-\sqrt{10}-1
The first term is \sqrt{10\times10}=\sqrt{100}=10. So, denominator finally becomes
10-1=9
Thus, the fraction is
\dfrac{7\sqrt{10}+7}{9}
This can also be written as
\dfrac{7(1+\sqrt{10})}{9}
Worksheet and Example Questions
(NEW) Surds - The Basics Exam Style Questions - MME
Level 6-7 GCSENewOfficial MME(NEW) Surds - Rationalise and harder Surds Exam Style Questions - MME
Level 8-9 GCSENewOfficial MMEDrill Questions
Surds 1 - Drill Questions
Level 6-7 GCSESurds 2 - Drill Questions
Level 6-7 GCSESurds Hard - Drill Questions
Level 6-7 GCSEYou May Also Like...
GCSE Maths Revision Cards
Revise for your GCSE maths exam using the most comprehensive maths revision cards available. These GCSE Maths revision cards are relevant for all major exam boards including AQA, OCR, Edexcel and WJEC.
GCSE Maths Revision Guide
The MME GCSE maths revision guide covers the entire GCSE maths course with easy to understand examples, explanations and plenty of exam style questions. We also provide a separate answer book to make checking your answers easier!
GCSE Maths Predicted Papers 2022 (Advance Information)
GCSE Maths 2022 Predicted Papers are perfect for preparing for your 2022 Maths exams. These papers have been designed based on the new topic lists (Advance Information) released by exam boards in February 2022! They are only available on MME!
Level 9 GCSE Maths Papers 2022 (Advance Information)
Level 9 GCSE Maths Papers 2022 are designed for students who want to achieve the top grades in their GCSE Maths exam. Using the information released in February 2022, the questions have been specifically tailored to include the type of level 9 questions that will appear in this year's exams.