# Sine Rule - Formula, Revision and Worksheets

# Sine Rule - Formula, Revision and Worksheets

## The Sine Rule

When we first learn the **sine function**, we learn how to use it to find **missing side-lengths** & **angles** in right-angled triangles. The **sine rule** is an equation that can help us find missing side-lengths and angles in any triangle.

Make sure you are happy with the following topics before continuing:

## The Sine Rule Formula

Looking at the triangle below, the **sine rule** is:

\dfrac{\textcolor{limegreen}{a}}{\sin \textcolor{limegreen}{A}}=\dfrac{\textcolor{blue}{b}}{\sin \textcolor{blue}{B}}=\dfrac{\textcolor{red}{c}}{\sin \textcolor{red}{C}}

In this topic, we’ll go through examples of how to use the **sine rule** to find missing angles and missing sides.

**Example 1: Sine rule to find a length**

Use the sine rule to find the side-length marked x to 3 s.f.

**[2 marks]**

First we need to match up the letters in the formula with the sides we want, here:

a=x, A=21\degree, b = 23 and B = 35\degree

Next we’re ready to substitute the values into the formula. Doing so gives us:

\dfrac{x}{\sin(21°)}=\dfrac{23}{\sin(35°)}

Multiplying both sides by \sin(21°):

x=\dfrac{23}{\sin(35°)}\times\sin(21°)

Putting this into a calculator we get:

x=14.37029543...

x=14.4 (3 sf)

As in previous topics, there is no need to evaluate the sine functions until the final step.

Level 6-7GCSE**Example 2: Sine rule to find an angle**

Use the sine rule to find the obtuse angle marked x to 2 s.f.

**[2 marks]**

As we have been asked to find a missing angle, we can use another version of the sine rule:

\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}

A=x, a=43, B=33\degree, b=25.

Substituting these values into the formula, we get:

\dfrac{\sin x}{43}=\dfrac{\sin(33°)}{25}

Multiply both sides by 43 to get:

\sin x=\dfrac{43\sin(33°)}{25}

Then, taking \sin^{-1} of both sides, we get:

x= \sin^{-1}\bigg(\dfrac{43\sin(33°)}{25}\bigg)

x=69.5175049...°

**However, the question asked for an obtuse angle, but we got an acute answer** – why?

It’s because we can draw two different (but **both correct**) triangles using the information we were given at the start.

This is **the ambiguous case of the sine rule**, and it occurs when you have 2 sides and an angle that doesn’t lie between them.

To find the **obtuse** angle, simply subtract the acute angle from 180:

180-69.5175049=110.4824951

x=110\degree (2 sf)

Level 6-7GCSE

## Example Questions

**Question 1:** Use the sine rule to find the side-length marked x in the below triangle to 3 significant figures.

**[3 marks]**

First, we need to find the angle opposite to the missing side as it is not given in the question. Using all the angles in a triangle add to 180 degrees we get that:

A=180\degree-40\degree-94\degree=46\degree

Now we have enough information to properly label the triangle and substitute values into the sine rule:

\dfrac{x}{\sin(46\degree)}=\dfrac{10.5}{\sin(94\degree)}

Solving for x we get:

x=\dfrac{10.5}{\sin(94\degree)}\times\sin(46\degree)=7.571511726...

x=7.57 (3 sf).

**Question 2: **Use the sine rule to find the side-length marked x in the below triangle to 3 significant figures.

**[2 marks]**

Here we are able to use the sine rule straightaway:

\dfrac{x}{\sin(30\degree)}=\dfrac{5}{\sin(80\degree)}

Multiplying both sides of the equation by \sin(30\degree):

x=\dfrac{5}{\sin(80\degree)}\times\sin(30\degree)=2.538566...

x=2.54 cm (3 sf).

**Question 3: **Use the sine rule to find the obtuse angle x on the diagram below to 3 significant figures.

**[3 marks]**

Here we are able to use the sine rule straightaway:

\dfrac{\sin(x\degree)}{12}=\dfrac{\sin(15\degree)}{7}

Multiplying both sides of the equation by 12 we find:

\sin(x)=\dfrac{12\times\sin(15\degree)}{7}=0.4436897916

Taking the inverse sine of both sides:

x=\sin^{-1}(0.4436897916)=26.33954244\degree

However considering the diagram, the angle is clearly obtuse (greater than 90 degrees). This is **the ambiguous case of the sine rule** and it occurs when you have 2 sides and an angle that doesn’t lie between them. To find the obtuse angle, simply subtract the acute angle from 180:

180\degree-26.33954244\degree =153.6604576

=154\degree (3 sf).

Instead of typing the full number into the calculator for each step of the calculation, you can use the **ANS **button to save time.

**Question 4: **Use the sine rule to find the angle CAB on the diagram below to 3 significant figures.

**[2 marks]**

We are able to use the sine rule straightaway:

\dfrac{\sin(x\degree)}{6.5}=\dfrac{\sin(52\degree)}{12}

Multiplying both sides of the equation by 6.5 we find that:

\sin(x)=6.5 \times \dfrac{\sin(52\degree)}{12} =0.4268391582

Taking the inverse sine of both sides and keeping the answer from the previous step on our calculator, we get:

x=\sin^{-1}(ANS)=25.26713177

x=25.3 \degree (3 sf).

**Question 5: **Use the sine rule to find the side-length marked x below to 3 significant figures.

**[2 marks]**

Applying the sine rule:

\dfrac{x}{\sin(35\degree)}=\dfrac{6}{\sin(68\degree)}

Multiplying both sides of the equation by \sin(35\degree), we find:

x=\dfrac{6}{\sin(68\degree)}\times\sin(35\degree)=3.711732685...

x=3.71 cm (3 sf).

## Worksheet and Example Questions

### (NEW) Sine Rule Exam Style Questions -MME

Level 6-7 GCSENewOfficial MME### (NEW) Sine and Cosine rule mixed Exam Style Questions -MME

Level 6-7 Level 8-9 GCSENewOfficial MME## Drill Questions

### Sine Rule - Drill Questions

Level 6-7 GCSE### Sine And Cosine Rules - Drill Questions

Level 6-7 GCSE### Cosine Rule - Drill Questions

Level 6-7 GCSE## You May Also Like...

### GCSE Maths Revision Cards

Revise for your GCSE maths exam using the most comprehensive maths revision cards available. These GCSE Maths revision cards are relevant for all major exam boards including AQA, OCR, Edexcel and WJEC.

### GCSE Maths Revision Guide

The MME GCSE maths revision guide covers the entire GCSE maths course with easy to understand examples, explanations and plenty of exam style questions. We also provide a separate answer book to make checking your answers easier!

### GCSE Maths Predicted Papers 2022 (Advance Information)

GCSE Maths 2022 Predicted Papers are perfect for preparing for your 2022 Maths exams. These papers have been designed based on the new topic lists (Advance Information) released by exam boards in February 2022! They are only available on MME!

### Level 9 GCSE Maths Papers 2022 (Advance Information)

Level 9 GCSE Maths Papers 2022 are designed for students who want to achieve the top grades in their GCSE Maths exam. Using the information released in February 2022, the questions have been specifically tailored to include the type of level 9 questions that will appear in this year's exams.