## What you need to know

Things to remember:

• To turn 100ths into 10ths, we divide the top and bottom of the fraction by 10.
• To turn 10ths into 100ths, we multiply the top and bottom of the fraction by 10.

Letâ€™s just remind ourselves of what the numbers in a fraction are called:

$$\frac{5}{100} = \frac{\leftarrow Numerator}{\leftarrow Denominator}$$

The easiest way to recognise equivalent fractions is to start with 10ths and turn them into 100ths. Remember, $10\times10=100$ and that we can multiply the top and bottom of a fraction by the same number.

$$\frac{1}{10} = \frac{1\times10}{10\times10}=\frac{10}{100}$$

$$\frac{2}{10} = \frac{2\times10}{10\times10}=\frac{20}{100}$$

$$\frac{3}{10} = \frac{3\times10}{10\times10}=\frac{30}{100}$$

$$\frac{4}{10} = \frac{4\times10}{10\times10}=\frac{40}{100}$$

$$\frac{5}{10} = \frac{5\times10}{10\times10}=\frac{50}{100}$$

$$\frac{6}{10} = \frac{6\times10}{10\times10}=\frac{60}{100}$$

$$\frac{7}{10} = \frac{7\times10}{10\times10}=\frac{70}{100}$$

$$\frac{8}{10} = \frac{8\times10}{10\times10}=\frac{80}{100}$$

$$\frac{9}{10} = \frac{9\times10}{10\times10}=\frac{90}{100}$$

$$\frac{10}{10} = \frac{10\times10}{10\times10}=\frac{100}{100}$$

Or, more simply:

$$\frac{1}{10} = \frac{10}{100}$$

$$\frac{2}{10} = \frac{20}{100}$$

$$\frac{3}{10} = \frac{30}{100}$$

$$\frac{4}{10} = \frac{40}{100}$$

$$\frac{5}{10} = \frac{50}{100}$$

$$\frac{6}{10} =\frac{60}{100}$$

$$\frac{7}{10} = \frac{70}{100}$$

$$\frac{8}{10} = \frac{80}{100}$$

$$\frac{9}{10} = \frac{90}{100}$$

$$\frac{10}{10} = \frac{100}{100}$$

## Example Questions

#### Question 1: What is $\dfrac{5}{10}$ in hundredths?

$$\frac{5}{10} = \frac{50}{100}$$
#### Question 2: What is $\dfrac{80}{100}$ in hundredths?
$$\frac{80}{100} = \frac{8}{10}$$