A22 SOLVE LINEAR INEQUALITIES IN ONE OR TWO VARIABLE(S), AND QUADRATIC INEQUALITIES IN ONE VARIABLE; REPRESENT THE SOLUTION SET ON A NUMBER LINE, USING SET NOTATION AND ON A GRAPH (higher tier)

You should be able to solve quadratic equations of the form $a x^{2}+b x+c=0$
e.g. $x^{2}-3 x-4=0$
$(x-4)(x+1)=0$
$x=4$ or $x=-1$
e.g. $3 x^{2}-14 x+8=0$
$(3 x-2)(x-4)=0$
$x=\frac{2}{3}$ or $x=4$
e.g. $x^{2}=10-3 x$
$x^{2}+3 x-10=0$
$(x+5)(x-2)=0$
$x=-5$ or $x=2$

You should also know the shape of a quadratic curve.
If the coefficient of x^{2} is positive, the curve is 'smiling'.
If the coefficient of x^{2} is negative, the curve is 'frowning'.

If $\mathrm{f}(x)>0$ or $\mathrm{f}(x) \geq 0$ we want the values of x where $\mathrm{f}(x)$ is above the x-axis.
If $\mathrm{f}(x)<0$ or $\mathrm{f}(x) \leq 0$ we want the values of x where $\mathrm{f}(x)$ is below the x-axis.

EXAMPLE 1

Solve $x^{2}+5 x-24 \geq 0$

If you are asked to write the solution set of the inequality $x^{2}+5 x-24 \geq 0$ then the answer would be: $\{x: x \leq-8, x \geq 3\}$

NOTE: There are TWO regions so we write the answer as TWO inequalities.

EXAMPLE 2

Find the solution set of the inequality $6\left(x^{2}+2\right)<17 x$

```
\(6 x^{2}+12<17 x\)
\(6 x^{2}-17 x+12<0\)
\((3 x-4)(2 x-3)<0\)
First expand the bracket
Rearrange to the form \(a x^{2}+b x+c<0\)
Factorise in order to find where it cuts the \(x\)-axis
```

Critical values are $x=4 / 3$ and $3 / 2$ Solve $(3 x-4)(2 x-3)=0$

Sketch the curve and shade below the axis
$\frac{4}{3}<x<\frac{3}{2} \quad$ We want the region where $\mathrm{f}(x)$ is below the x-axis
Solution set $=\left\{x: \frac{4}{3}<x<\frac{3}{2}\right.$ Make sure your answer is given in the correct form

NOTE: There is ONE region so we write the answer as ONE inequality.

EXAMPLE 3

Solve $x(x+9) \leq 0$
$x(x+9) \leq 0$

Critical values are $x=0$ and $x=-9$

$-9<x<0$

Sketch the curve and shade below the axis

We want the region where $\mathrm{f}(x)$ is below the x-axis
There is only one region so write as one inequality

EXERCISE:

1. Solve each of these inequalities.
(a) $x^{2}+9 x+18 \leq 0$
(b) $x^{2}-x-20<0$
(c) $(x-2)(x+7)>0$
(d) $x^{2}-5 x \geq 0$
(e) $2 x^{2}-11 x+12<0$
(f) $(5+x)(1-2 x) \geq 0$
(g) $15+2 x-x^{2} \leq 0$
(h) $21-x-2 x^{2}>0$
(i) $x(5 x-2)>0$
(j) $x^{2}-2 x>35$
2. Find the solution set for each of these inequalities.
(a) $x^{2}-4 x+3 \leq 0$
(b) $x^{2}+x-42<0$
(c) $x(x+2)>48$
(d) $3 x^{2}+14 x-5 \geq 0$
(e) $2 x^{2}>11 x-12$
(f) $16-x^{2} \leq 6 x$
(g) $7+2\left(4 x^{2}-15 x\right) \leq 0$
(h) $x^{2}-4(x+6)>8$
(i) $3 x(5-x)>0$
(j) $(x+5)^{2} \geq 1$
3. Solve $\frac{x^{2}+12}{2} \geq 4 x$
4. Find the solution set for which $15+2 x \leq x^{2}$
5. Find the set of values for which $6+x \geq x^{2}$ and $x+2<x^{2}$
6. Find the solution set for $(x-3)(2 x+3)<2 x(1-2 x)-5$

ANSWERS:

1.

(a) $-6 \leq x \leq-3$
(b) $-4<x<5$
(c) $x<-7$ or $x>2$
(d) $x \leq 0$ or $x \geq 5$
(e) $\frac{3}{2}<x<4$
(f) $-5 \leq x \leq \frac{1}{2}$
(g) $x \leq-3$ or $x \geq 5$
(h) $-\frac{7}{2}<x<3$
(i) $x<0$ or $x>\frac{2}{5}$
(j) $x<-5$ or $x>7$
2. (a) $\{x: 1 \leq x \leq 3\}$
(b) $\{x:-7<x<6\}$
(c) $\{x: x<-8, x>6\}$
(d) $\left\{x: x \leq-5, x \geq \frac{1}{3}\right\}$
(e) $\left\{x: x<\frac{3}{2}, x>4\right\}$
(f) $\{x: x \leq-8, x \geq 2\}$
(g) $\left\{x: \frac{1}{4} \leq x \leq \frac{7}{2}\right\}$
(h) $\{x: x<-4, x>8\}$
(i) $\{x: 0<x<5\}$
(j) $\{x: x \leq-6, x \geq-4\}$
3. $x \leq 2$ or $x \geq 6$
4. $\{x: x<-1, x>2\}$
5. $-2 \leq x<-1$ and $2<x \leq 3$
6. $\left\{x:-\frac{1}{2}<x<\frac{4}{3}\right\}$

