AQA, OCR, Edexcel GCSE

GCSE Maths

Velocity-Time Graphs

Name:

M M E
 Mathsmadeeasy.co.uk

Guidance

1. Read each question carefully.
2. Don't spend too long on each question.
3. Attempt every question.
4. Always show your workings.

Revise GCSE Maths: www.MathsMadeEasy.co.uk/gcse-maths-revision/

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

1. Anna goes out for a drive and her journey is shown on the velocity-time graph below. For each statement, write a time or period that satisfies this condition. i.e $t=0$, or $t=0$ to 10 .

- Anna is at rest
- Anna's velocity is constant
- Two sections with the same speed \qquad
- Two sections with the same acceleration \qquad
- The section with the highest acceleration \qquad
- The section with the highest velocity \qquad

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
2. The velocity-time graph below shows Brian's daily journey.

a) What is Brian's largest positive acceleration over the course of the journey?
\qquad
\qquad acceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$
b) Estimate the total distance travelled by Brian over the course of the journey.
\qquad
\qquad
\qquad

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
3. Using the information below, complete the velocity-time diagram for Celica's journey.

- By the 60 -minute mark, Celica has travelled 24 km total
- After this she increases velocity to $14 \mathrm{~m} / \mathrm{s}$ over 40 minutes
- She then maintains her velocity for 20 minutes before decelerating for 60 minutes at the same rate as her acceleration between 60-100 minutes.

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
4. Diane goes out cycling for a 150-minute journey, and her progress is displayed in the velocity-time graph below.

She looks at the graph and makes a calculation. She states, "My acceleration from 12:00 to $13: 30$ was a constant $10 \mathrm{~m} / \mathrm{h}^{2 "}$ What is wrong with her statement?
\qquad
\qquad
\qquad
\qquad
What has she actually calculated?
\qquad
\qquad

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
5. Diane looks again at her velocity-time graph and makes a calculation of the distance she covered.

She calculates the distance covered using the dashed line to estimate her change in velocity between 12:00 and 14:00.

She states, "I rested from 14:00 to 14:30, so I can estimate the total distance covered on my journey by using the area of a trapezium"

$$
\text { Distance }=\frac{2.5(2+20)}{2}=27.5 \text { miles }
$$

a) Why is her estimate incorrect, and what is the correct estimate for her distance covered?
\qquad
\qquad
\qquad
\qquad
\qquad miles

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
b) Is your estimate an underestimate or an overestimate? Why?
\qquad
\qquad
\qquad
c) Finally, how could Diane make a more accurate estimate of the distance she travelled overall?
\qquad
\qquad
\qquad
6. Partition the diagram to show how you could make an estimate of the distance covered from 2 hours to 7 hours. Would your estimate be an underestimate or overestimate?

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
7. Eirika takes a bike ride, first travelling to the shops, arriving at 16:30, then travelling to a friend's house to arrive at 19:00.

a) What does the velocity from 16:30 onwards represent?
\qquad
b) Calculate the overall distance travelled by Eirika.
\qquad
\qquad
\qquad
\qquad
\qquad
c) What is the difference between your answer and the distance between Eirika and her friend's house?
\qquad
\qquad
(1 mark \& 3 marks \& 1 mark)

