Henry and Poppy have fun with numbers

Year 6 maths part 1

(for 10-11 year olds)

We had fun making these questions for you. Enjoy them.

1 The world's highest mountain is $885,000 \mathrm{~cm}$
A smaller mountain is $25,000 \mathrm{~cm}$ less

How high is the smaller mountain

The distance to the moon is 384 , million metres

Not to scale

Write the number that is one hundred thousand less than 384 million

1 mark

6N2: Read, write, order and compare numbers up to $10,000,000$

2 The Eiffel Tower cost 7,799,401 French Francs to build

What is $7,799,401$ in words

What is half a million less than $7,799,401$

6N2: Read, write, order and compare numbers up to 10,000,000

3 Write these numbers in words

1,123,456

$$
1,654,321
$$

 1,654,321

 1,654,321}

$$
9,801,010
$$

4
Sort these numbers in order, highest at the top
$123,456 \quad 102,345 \quad 120,456 \quad 122,345 \quad 123,056$

6N2: Read, write, order and compare numbers up to $10,000,000$

5
Write the correct sign. Choose from >, < or =

6N2: Read, write, order and compare numbers up to $10,000,000$

1 Look at this number

$$
12,345,678
$$

What value does the 3 represent in this number

What value does the 2 represent in this number

Write eight million, nine hundred and twenty six thousand, three hundred and forty six as a number

1 mark

6N3: Determine the value of each digit in numbers up to $10,000,000$

2 Look at this number

$$
9,102,659
$$

What value does the 0 represent in this number

1 mark
What value does the 2 represent in this number

Write seven million, fifty six thousand and twenty six as a number

1 mark

6N3: Determine the value of each digit in numbers up to $10,000,000$

3 Look at this number

$$
7,031,529
$$

What value does the 0 represent in this number

1 mark
What value does the 1 represent in this number

Write four million, two thousand and nine as a number

6N3: Determine the value of each digit in numbers up to $10,000,000$

1 The Eiffel Tower is $32,400 \mathrm{~cm}$ high.

It cost 7,799,401 French Francs to build

What is $32,400 \mathrm{~cm}$ when rounded

to the nearest 10000

to the nearest 1000

What 7,799,401 when rounded

6N4: Round any whole number to a required degree of accuracy

1 mark

2 Look at these number
123,050

124, 099
123, 999

Tick all the numbers which are 123, 000 when rounded to the nearest 1,000

What is 358,287 when rounded
to the nearest 100, 000 \square
to the nearest $\mathbf{1 0 , 0 0 0}$ \square

6N4: Round any whole number to a required degree of accuracy

3 Look at these number

Tick all the numbers which are 130,000 when rounded to the nearest 10,000

What is 488,587 when rounded
to the nearest $\mathbf{1 , 0 0 0}$ \square
to the nearest $\mathbf{1 0 0 , 0 0 0}$ \square

4 Look at these number
154,050
145, 099
231,450
204,999

Tick all the numbers which are 200,000 when rounded to the nearest $\mathbf{1 0 0 , 0 0 0}$

What is $1,588,587$ when rounded
to the nearest 100 \square
to the nearest 1,000,000 \square

6N4: Round any whole number to a required degree of accuracy

1 The thermometers show the temperature at day and night.

What is the difference between the two temperatures?

Yesterday the temperature was 2 degrees lower at night.

What was the temperature at night yesterday?

2 The channel tunnel is 250 feet below sea level.

The Seikan Tunnel in Japan is 540 feet deeper.

How deep is the Seikan Tunnel

feet

Ref: 6N5 Use negative numbers in context, and calculate intervals across zero

3 The temperature today is shown on the thermometer.

Yesterday the temperature was $12^{\circ} \mathrm{C}$ colder.
What was the temperature vesterdav in ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$

Ref: 6N5 Use negative numbers in context, and calculate intervals across zero

1 mark
\qquad

4
Write the missing numbers.
The first one has been done

halfway

between

1 mark

1 mark

Ref: 6N5 Use negative numbers in context, and calculate intervals across zero

3 The Mariana Trench is the deepest part of the world's oceans. It is 11,0344 metres deep.

Mount Everest is the world's highest mountain. It 8,848 metres high.

How far is it between the bottom of the Mariana Trench and the top of Mount Everest.

1 What is 15.1×19.6

Estimate and tick the correct answer

280	350	300	3,000	1519
\square	\square	\square	\square	\square

\square

1 mark

Ref: 6C3 Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

2 What is $149 \div 9.8$
Estimate and tick the correct answer

Ref: 6C3 Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

3 What is 550×9.9

Estimate and tick the correct answer

Between
500-1000

Between
1000-5000

Between
5000-9000

Ref: 6C3 Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

4 What is $800 \times 12 \div 3$
Estimate and tick the correct answer

Between	Between	Between
$2000-3000$	$3000-4000$	$4000-5000$
\square	\square	

Ref: 6C3 Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

5 What is $4.8 \times 50 \div 2.4$

Estimate and tick the correct answer

Between	Between	Between
$100-200$	$200-300$	$400-500$
\square	\square	

1 mark

Ref: 6C3 Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

1 There were 12 people on the bus.

At the first stop, six more people got on and two got off.
At the second stop, eight more people got on and nine got off.
How many people are left on the bus after the second stop.

2 marks

Ref: 6C4 Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

2 There were two school buses B1 and B2.

There were 8 more children on the B 1 than the B 2 .
Altogether on both buses there were 56 children.

How many children were on each bus.

B1

B2

Ref: 6C4 Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why also (Algebra)

3 There were three school buses B1, B2 and B3.

There were two more children on the B1 than the B2.
There were five less children on the B3 than the B2
Altogether on the three buses there were 87 children.

How many children were on each bus.

B1 \square

B3

Ref: 6C4 Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why (also Algebra)

Write all the common multiples of 2 and 9 that are less than 40
\square

O
1 mark

Ref: 6C5 Identify common factors, common multiples and prime numbers

2
Write all the common factors of 18 and 42
\square

Write the numbers from 20 to 30 in their correct place on the diagram.

	Multiple of 3	NOT multiple of 3
Prime		
Not prime		

Ref: 6C5 Identify common factors, common multiples and prime numbers

4
Write the factors of 24 and 30 and their common factors on the diagram.

Factors of 24
Factors of 30

2 marks

Ref: 6C5 Identify common factors, common multiples and prime numbers

5 Sort these numbers into Prime and Not prime.

6
Write multiples to make these additions correct

Ref: 6C5 Identify common factors, common multiples and prime numbers

\square
2 marks

Ref: 6C5 Identify common factors, common multiples and prime numbers

1

$$
240 \div 5=
$$

1 mark
$340 \times 5=$

$248 \div 8=$

Ref: 6C6 Perform mental calculations, including with mixed operations and large numbers

2 A stack of oranges contains 56 oranges.
Each stack has 4 trays.

How many oranges are in 3 trays

2 marks

Ref: 6C6 Perform mental calculations, including with mixed operations and large numbers

3 A stack of oranges contains 56 oranges.
The cost of a stack is $£ 14.56$.

How much do 8 oranges costs

| |
| :---: | | Show |
| :--- |
| your |
| Method |

[^0]

2 marks

4
99% of $500=$

1 mark
$32 \times 0.75=$

44% of $25=$

1 mark

Ref: 6C6 Perform mental calculations, including with mixed operations and large numbers

1 mark

Ref: 6C6 Perform mental calculations, including with mixed operations and large numbers

6 Which calculations (\checkmark) give a negative answer
-1×-1 \square

$-1+-1$

$-1 \div-1$

\square
$-1--1$
$=$ \square

\bigcirc
1 mark

Ref: 6C6 Perform mental calculations, including with mixed operations and large numbers

7 A stack of oranges contains 63 oranges.
The cost of a stack is $£ 18.09$.

How much do 7 oranges costs

[^1]1

$$
420 \div 6=
$$

$$
1000 \div 8=
$$

```
81\times3\div9=
```


1 mark

Show your method																	$\underbrace{}_{2 \text { marks }}$
				4		5	8	2									
	\times						4	7									
	$1 \mathrm{wr}$	7a	Multiply met			$\begin{aligned} & \text { git nu } \\ & \text { ng mu } \end{aligned}$	$\begin{aligned} & \text { umbe } \\ & \text { nultipl } \end{aligned}$			$4 \text { digit }$	ts by a	a two-dic	igit who	ole num	mber us	sing the	

3 A supermarket ordered 35 boxes of oranges.
Each box contains 4 trays of oranges
Each tray contains 12 oranges.

How many oranges did the supermarket order in total

Ref: 6C7a Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication.

5 A rocket needs to travel at 4.9 miles per second to get into space

What is the rocket's speed in miles per hour

Ref: 6C7a Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication.

6 One of the world's fastest

 trains travels at 198 mphWhat distance would it travel in 17 hours

2 marks

Ref: 6C7a Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication.

3 One of the world's longest railway journey is
2,717 miles.

It takes 48 hours.

What is the average speed in miles per hour.

Show your method																	
			3	$7)$	1	0	7	3									
		f: 6C7b ethod of rounding	Divi shor g, as	de num divisio appro	mbers ion an opriat	$\begin{aligned} & \text { sup } \\ & \text { and in } \\ & \text { te fer } \end{aligned}$	$\begin{aligned} & 04 \text { di } \\ & \text { erpre } \\ & \text { the } \end{aligned}$	igits by t rem contex			git num whole \qquad	mber u e numb \qquad		the forma mainders	al writte s, fract \qquad	ctions, or	

6 One of the world's longest railway journey is 8289 km.

It has 58 stops.

What is the average distance between stops.

Ref: 6C7b Divide numbers up to 4 digits by a two-digit number using the formal written method of short division and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context

1 A machine makes 2,600 plastic coins per hour

They are packed into boxes - 29 coins per box

How many boxes can be filled with 2,600 coins.

Ref: 6C7c: Divide numbers up to 4 digits by a two digit number using the formal written method of short division where appropriate, interpreting remainders according to the context

2 A machine makes 2,605 plastic coins per hour

How many coins does it make per minute

Ref: 6C7c: Divide numbers up to 4 digits by a two digit number using the formal written method of short division where appropriate, interpreting remainders according to the context

3 Henry had a box of breakfast cereal grains weighing 1 kg .

He counted each flake in the box and got 2500 cereal flakes.

How much does one cereal flake weigh

Ref: 6C7c Divide numbers up to 4 digits by a two digit number using the formal written method of short division where appropriate, interpreting remainders according to the context

4 A school playing field needs seeding with grass seed. The playing field measures 66 m by 102 m .

One box of grass seed covers $17 \mathrm{~m}^{2}$

How many boxes will be needed to seed the pitch.

Ref: $6 \mathrm{C} 7 \mathrm{a} / 6 \mathrm{C} 7 \mathrm{c}$: Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication

Divide numbers up to 4 digits by a two digit number using the formal written method of short division where appropriate, interpreting remainders according to the context

1 Henry picks a number more than 50
He divides it by 6 and then adds 11
He then multiplies this result by 2.5
His answer is 50

What was the number he started with?

Show
your
Method

2 marks

Ref: 6C8: Solve problems involving addition, subtraction, multiplication and division

2 Write the missing number

$$
\square \div 20=2.5
$$

Ref: 6C8 Solve problems involving addition, subtraction, multiplication and division

3 $19 \times 16.8=319.2$

Use this fact to work out $319.2 \div 190$

1 mark

Ref: 6C8: Solve problems involving addition, subtraction, multiplication and division

5 Poppy bakes ten cakes for the school fete.
It costs $£ 1.25$ to make a cake.
She cuts each cake into 8 equal portions.
She sells each portion of cake for 50p.
She sells all the cakes.

How much profit does she make altogether

3 marks

Ref: 6C8: Solve problems involving addition, subtraction, multiplication and division

1

$$
4^{2}-5=
$$

Ref: 6C9: Use their knowledge of the order of operations to carry out calculations involving the four operations

2

$$
70-49 \div 7=
$$

Ref: 6C9: Use their knowledge of the order of operations to carry out calculations involving the four operations

4

$$
80-35 \div 5=
$$

Ref: 6C9: Use their knowledge of the order of operations to carry out calculations involving the four operations

$$
(80-35) \div 5=
$$

Ref: 6C9: Use their knowledge of the order of operations to carry out calculations involving the four operations

6

$$
(100+10)-(35+10) \div 5=
$$

Ref: 6C9: Use their knowledge of the order of operations to carry out calculations involving the four operations

1
Write the two missing digits to make these equivalent fractions correct.

$$
\frac{\square}{3}=\frac{8}{12}=\frac{6}{\square}
$$

O
2 marks

Ref: 6F2 Use common factors to simplify fractions; use common multiples to express fractions in the same denomination

| 2 Write the two missing digits to make these equivalent |
| :--- | :--- | :--- |
| fractions correct. |

3

Write these fractions in their simplest form.

2 marks

Ref: 6F2 Use common factors to simplify fractions; use common multiples to express fractions in the same denomination

4

Write these fractions in their simplest form.

2 marks

Ref: 6F2 Use common factors to simplify fractions; use common multiples to express fractions in the same denomination

1

Order these fractions starting with the smallest

Ref: 6F3: Compare and order fractions, including fractions >1

1 mark

2
Order these fractions starting with the smallest
$1 \frac{3}{4}$
$1 \frac{2}{3}$
$1 \frac{5}{6}$
$1 \frac{5}{8}$
$1 \frac{7}{12}$

1 mark

Ref: 6F3: Compare and order fractions, including fractions >1

Order these fractions starting with the smallest
$\frac{5}{3}$
$\frac{7}{4} \quad \frac{17}{12}$
$\frac{13}{8}$
$\frac{9}{6}$

smallest

Ref: 6F3: Compare and order fractions, including fractions >1

1

$$
1 \frac{3}{5}+\frac{3}{4}=
$$

Ref: 6F4: Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions

2

$$
1 \frac{4}{6}-1 \frac{1}{4}=
$$

Ref: 6F4: Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions

$$
\frac{3}{5}+\frac{2}{10}=
$$

Ref: 6F4: Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions

4

$$
\frac{3}{4}-\frac{5}{12}=
$$

Ref: 6F4: Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions

5 Poppy had a pizza.

She gave $\frac{1}{5}$ of the pizza to her mum.

She gave $\frac{1}{2}$ of the pizza to her brother.

6 Poppy had some marbles.

She gave $\frac{1}{3}$ of the marbles to Henry

She gave $\frac{5}{12}$ of the marbles to Granddad

What fraction does she have left?

Ref: 6F4: Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions

1

$$
\frac{1}{6} \times \frac{1}{2}=
$$

2

$$
\frac{3}{4} \times \frac{1}{3}=
$$

Ref: 6F5a: Multiply simple pairs of proper fractions, writing the answer in its simplest form [eg: $1 / 4 \times$ $1 / 2=1 / 8]$

$$
\frac{1}{5} \times \frac{1}{3}=
$$

4

$$
\frac{2}{3} \times \frac{1}{2}=
$$

Ref: 6F5a: Multiply simple pairs of proper fractions, writing the answer in its simplest form [eg: $1 / 4 \times$ $1 / 2=1 / 8]$

$$
\frac{4}{7} \div 2=
$$

2

$$
\frac{4}{5} \div 4=
$$

$$
\frac{1}{50} \div 2=
$$

4 Henry had half a cake to divide equally between himself and 3 friends

What fraction of cake did they each get

Ref: 6F5b: Divide proper fractions by whole numbers [eg: $1 / 3 \div 2=1 / 6$]

1

$$
3 \div 8=\square
$$

Ref: 6F6 Associate a fraction with division to calculate decimal fraction equivalents (eg: 0.375) for a simple fraction [e.g.: $3 / 8$]

2 Write the decimal for these fractions
The first one has been done for you.

$$
\begin{aligned}
& \frac{1}{2}=0.5 \\
& \frac{5}{25}=\square \\
& \frac{14}{50}=\square
\end{aligned}
$$

3 Write the decimal for these fractions	
The first one has been done for you.	
$\frac{3}{4}=$	0.75
$\frac{37}{100}$	

4 Poppy's mum made 2 cakes for her party.

The cakes were equally shared between 20 children.

How much cake did each child get.
Give your answer as a fraction and a decimal amount.

Show
your
Method

2 marks

Ref: 6F6 Associate a fraction with division to calculate decimal fraction equivalents (e.g.: 0.375) for a simple fraction [e.g.: $3 / 8$]

5 At a school party there were 10 cakes.

They were equally shared between 80 children.

How much cake did each child get.
Give your answer as a fraction and a decimal.

Ref: 6F6 Associate a fraction with division to calculate decimal fraction equivalents (e.g.: 0.375) for a simple fraction [e.g.: $3 / 8$]

6 Granddad had a bag of 100 marbles.

He gave 15 of the marbles to Poppy.

How much of the original bag was left.
Give your answer as a fraction and a decimal.

Ref: 6F6 Associate a fraction with division to calculate decimal fraction equivalents (e.g.: 0.375) for a simple fraction [e.g.: $3 / 8$]

7 Granddad had a box of 40 marbles.

He gave 25 of the marbles to Henry.
He gave 15 of the marbles to Poppy.

Ref: 6F6 Associate a fraction with division to calculate decimal fraction equivalents (e.g.: 0.375) for a simple fraction [e.g.: 3/8]

1 Write the value of the thousandth in these numbers.
The first one has been done for you.

1.567

60.1234
9.8706
123.9867
\square 7

Ref: 6F9a: Identify the value of each digit to three decimal places and multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places

$$
65.4 \div 1000=
$$

Ref: 6F9a: Identify the value of each digit to three decimal places and multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places

$2.64 \times 6=$

1 mark

Ref: 6F9b Multiply one-digit numbers with up to two decimal places by whole numbers

3 Look at the number pyramid

The number in a box is the product of the two numbers below it.

Write the missing numbers

1 A stack of 15 tokens weighs 200 grams.

What is the weight of one token to one decimal place

\square
2 marks

Ref: 6F9c: Use written division methods in cases where the answer has up to two-decimal places

2 A bag of 50 marbles weighs 490 grams.

What is the weight of one marble to one decimal place

2 marks

Ref: 6F9c: Use written division methods in cases where the answer has up to two-decimal places

3 A box of 8 pencils costs $£ 3$.

How much are the pencils each to the nearest penny.

2 marks

Ref: 6F9c: Use written division methods in cases where the answer has up to two-decimal places

4 A basket of 8 oranges weighed 962 grams

Calculate the average weight of one orange Round your answer to one decimal place.

Ref: 6F9c: Use written division methods in cases where the answer has up to two-decimal places

2 marks

1 Half a kilogram of silver costs $£ 230$.

What is the cost of one gram of silver?

2 marks

Ref: 6F10: Solve problems which require answers to be rounded to specified degrees of accuracy

2 A box of snack cereals weighs 0.5 kg .

The box costs £2.40.

How much does 20 gms of cereals cost to the nearest penny.

Ref: 6F10: Solve problems which require answers to be rounded to specified degrees of accuracy

3 Four boxes of snack cereals costs $£ 9.20$

Each box weighs 0.5 kg
How much does 20 gms of cereals cost to the nearest penny.

Ref: 6F10: Solve problems which require answers to be rounded to specified degrees of accuracy

4 A gold coins costs $£ 900$

One coin weighs 28gms

What is the cost of one gram of gold?
 Round your answer to 1 decimal place

2 marks

Ref: 6F10: Solve problems which require answers to be rounded to specified degrees of accuracy

1 Poppy had 100 marbles.

She gave $\frac{3}{5}$ of the marbles to Henry.

She gave 35% to Granddad

How many marbles does she have left?

Ref 6F11: Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts

2 Henry had a pizza.

He gave 12.5% of the pizza to mum.

He gave 25% of the pizza to Poppy.

What fraction does he have left?

2 marks

Ref 6F11: Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts

3 A box of tea bags has 200 bags.
It weighs 600 grams

Poppy used 30% of the tea bags.
How many tea bags are left and what do they weigh?

Ref 6F11: Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts

4 Poppy says that 0.45 is bigger than $\frac{22}{50}$

Is Poppy correct (\checkmark) ? Show your working

Ref 6F11: Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts

5 Henry says that 56% is smaller than $\frac{13}{25}$

Is Henry correct (\checkmark) ? Show your working

Ref 6F11: Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts

[^0]: Ref: 6C6 Perform mental calculations, including with mixed operations and large numbers

[^1]: Ref: 6C6 Perform mental calculations, including with mixed operations and large numbers

