Instructions

Answers
This means write down your answer or show your working and your answer.

Calculators
You must not use a calculator in this test.

Formulae
You might need to use these formulae.

Trapezium
Area = \(\frac{(a+b)}{2} \times h\)

Prism
Volume = area of cross-section \times length
1. Look at these angles.

angle P angle Q angle R angle S angle T

(a) One of the angles measures 120°

Write its letter.

(b) Complete the drawing below to show an angle of 157°

Label the angle 157°
(c) 15 pupils measured an angle.

Here are their results.

<table>
<thead>
<tr>
<th>Angle measured as</th>
<th>Number of pupils</th>
</tr>
</thead>
<tbody>
<tr>
<td>45°</td>
<td>5</td>
</tr>
<tr>
<td>134°</td>
<td>3</td>
</tr>
<tr>
<td>135°</td>
<td>4</td>
</tr>
<tr>
<td>136°</td>
<td>3</td>
</tr>
</tbody>
</table>

Use the results to decide what the angle is most likely to measure.

The angle is°

How did you decide?

1 mark
2. The sketch shows the net of a triangular prism.

The net is folded up and glued to make the prism.

(a) Which edge is **tab 1** glued to?
On the diagram, label this edge A

(b) Which edge is **tab 2** glued to?
Label this edge B

(c) The corner marked • meets two other corners.
Label these two other corners •
3. Maria and Kay ran a 1500 metres race. The distance-time graph shows the race.

Use the graph to help you fill in the gaps in this report of the race.

Just after the start of the race, Maria was in the lead.

At 600 metres, Maria and Kay were level.

Then Kay was in the lead for minutes.

At metres, Maria and Kay were level again.

.............. won the race.

Her total time was minutes.

.............. finished minutes later.
4. The table shows some percentages of amounts of money.

<table>
<thead>
<tr>
<th></th>
<th>£10</th>
<th>£30</th>
<th>£45</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>50p</td>
<td>£1.50</td>
<td>£2.25</td>
</tr>
<tr>
<td>10%</td>
<td>£1</td>
<td>£3</td>
<td>£4.50</td>
</tr>
</tbody>
</table>

You can use the table to help you work out the missing numbers.

15% of £30 = £

£6.75 = 15% of £

£3.50 = % of £10

25p = 5% of £
5.

Museum
entrance fee
£1.20 per person

(a) 240 people paid the entrance fee on Monday.

How much money is that altogether?
Show your working.

(b) The museum took £600 in entrance fees on Friday.

How many people paid to visit the museum on Friday?
Show your working.

£

2 marks

people

2 marks
Simplify

6. Write each expression in its simplest form.

\[7 + 2t + 3t \]

\[b + 7 + 2b + 10 \]

\[(3d + 5) + (d - 2) \]

\[3m - (-m) \]
7. (a) Two numbers **multiply** together to make **–15**
They **add** together to make **2**
What are the two numbers?

........ and

1 mark

(b) Two numbers **multiply** together to make **–15**, but **add** together to make **–2**
What are the two numbers?

........ and

1 mark

(c) Two numbers **multiply** together to make **8**, but **add** together to make **–6**
What are the two numbers?

........ and

1 mark

(d) The square of 5 is 25
The square of **another** number is also 25
What is that other number?

........

1 mark
8. There are some cubes in a bag.
The cubes are either red (R) or black (B).

The teacher says:

If you take a cube at random out of the bag, the probability that it will be red is \(\frac{1}{5} \)

(a) What is the probability that the cube will be black?

(b) A pupil takes one cube out of the bag.
It is red.

What is the smallest number of black cubes there could be in the bag?

(c) Then the pupil takes another cube out of the bag.
It is also red.

From this new information, what is the smallest number of black cubes there could be in the bag?
(d) A different bag has blue (B), green (G) and yellow (Y) cubes in it. There is at least one of each of the three colours.

The teacher says:

If you take a cube at random out of the bag, the probability that it will be green is $\frac{3}{5}$

There are 20 cubes in the bag.

What is the greatest number of yellow cubes there could be in the bag?

Show your working.
9. Jenny and Alan each have a rectangle made out of paper.

One side is 10cm.
The other side is n cm.

(a) They write expressions for the perimeter of the rectangle.

Jenny writes $2n + 20$
Alan writes $2(n + 10)$

Tick (✓) the true statement below.

Jenny is correct and Alan is wrong. ☐
Jenny is wrong and Alan is correct. ☐
Both Jenny and Alan are correct. ☐
Both Jenny and Alan are wrong. ☐

1 mark

(b) Alan cuts his rectangle, then puts the two halves side by side.

What is the perimeter of Alan’s new rectangle?
Write your expression as simply as possible.

...
(c) Jenny cuts her rectangle a different way, and puts one half below the other.

What is the perimeter of Jenny’s new rectangle?
Write your expression as simply as possible.

(d) What value of \(n \) would make the perimeter of Jenny’s new rectangle the same value as the perimeter of Alan’s new rectangle?
10. These straight line graphs all pass through the point (10, 10)

(a) Fill in the gaps to show which line has which equation.

- line has equation $x = 10$
- line has equation $y = 10$
- line has equation $y = x$
- line has equation $y = \frac{3}{2}x - 5$
- line has equation $y = \frac{1}{2}x + 5$

2 marks
(b) Does the line that has the equation \(y = 2x - 5 \) pass through the point (10, 10)?

Explain how you know.
11. (a) Circle the best estimate of the answer to

\[72.34 \div 8.91 \]

(b) Circle the best estimate of the answer to

\[32.7 \times 0.48 \]

(c) Estimate the answer to \(\frac{8.62 + 22.1}{5.23} \)

Give your answer to 1 significant figure.

(d) Estimate the answer to \(\frac{28.6 \times 24.4}{5.67 \times 4.02} \)
12. The plan shows the position of three towns, each marked with a \(\times \). The scale of the plan is \(1 \text{ cm to } 10 \text{ km} \).

The towns need a new radio mast. The new radio mast must be:
- nearer to Ashby than Ceewater, and
- less than 45 km from Beaton.

Show on the plan the region where the new radio mast can be placed. Leave in your construction lines.
13. (a) Two of the expressions below are equivalent.
Circle them.

\[5(2y + 4) \quad 5(2y + 20) \quad 7(y + 9) \]
\[10(y + 9) \quad 2(5y + 10) \]

1 mark

(b) One of the expressions below is not a correct factorisation of \(12y + 24\)
Which one is it? Put a cross (\(\times\)) through it.

\[12(y + 2) \quad 3(4y + 8) \quad 2(6y + 12) \]
\[12(y + 24) \quad 6(2y + 4) \]

1 mark

(c) Factorise this expression.

\[7y + 14 \]

1 mark

(d) Factorise this expression as fully as possible.

\[6y^3 - 2y^2 \]

2 marks
14. Look at these number cards.

![Number cards: 0.2, 2, 10, 0.1, 0.05, 1]

(a) Choose two of the cards to give the **lowest possible answer**.
Fill in the cards below and work out the answer.

\[
\begin{array}{c}
 \\
\times \\

\end{array}
\]

=

2 marks

(b) Choose two of the cards to give the answer **100**

\[
\begin{array}{c}
 \\
\div \\

\end{array}
\]

= 100

1 mark
15. (a) Look at these cards.
You can see two of the expressions. The third is hidden.

\[3x - 10\] \[3x\] \[?\]

The mean value of the expressions is \(3x\).

What is the hidden expression?

\[\text{\textbullet\textbullet\textbullet} \]

1 mark

(b) Write a set of three expressions that has a mean value of \(4x\).

\[\text{\textbullet\textbullet\textbullet} \]

1 mark

(c) What is the mean value of these three expressions?

\[2x + 3\] \[5x - 9\] \[5x + 12\]

Show your working.

Write your expression as simply as possible.

\[\text{\textbullet\textbullet\textbullet\textbullet} \]

2 marks
16. Look at these expressions.

\[
\begin{align*}
& n - 2 \\
& 2n \\
& n^2 \\
& \frac{n}{2} \\
& \frac{2}{n}
\end{align*}
\]

(a) Which expression gives the greatest value when \(n \) is between 1 and 2?

(b) Which expression gives the greatest value when \(n \) is between 0 and 1?

(c) Which expression gives the greatest value when \(n \) is negative?