OCR

A Level

A Level Maths

OCR Core Maths C4 January 2013 Model Solutions

Name:

Mathsmadeeasy.co.uk

Total Marks:

OCR Jan 13 C4
1. 1 x x x x x x x x x x x x x x x x x x
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3
- x - 3 - [1 sin 3 x dx
$= \frac{x \sin 3x - \int \int \sin 3x dx}{3}$
: x sin 3x + 1 cos 3x + c
3 9
3/2
2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2(9/2/9/
$= 27 \left(1 - 8x + 32x^2 + \dots \right)$
3 27
$27 - 72x + 32x^2$
valid for $\left \frac{-16x}{9} \right < 1$ $\left \frac{1}{x} \right < \frac{9}{16}$
16
3. $xy^2 = x^2 + 1$; $y^2 = x^2 + 1$
y x
$y^2 + 2yxy' = 2x = y' = 2x - y^2$
2×4
$ax = x^2 + 1$
~
$\chi^2 = 1 = \times = \pm 1$
(1, 1/2) (-1, 1/2)

	4; 0 1+2x = 6+m; 2x = m+5	3)
	@ 2+ x : 8+ 4m ; x = 4m +6	72
-	3 3x = 1-5m 2x = 8m+12	Ø
③	$\omega = 7m + 7 \Rightarrow m = -1$	
-	sub is (4) (2) (2) (3) (4)	
	VERIFY in (3): 3(2) = 1-5(-1)	
-	6 = 6 => lives meet	
	P at (5, 4, 6)	(
-		
	Lii, (2) (1)	
	3/1-5 : 6050	
-	$\sqrt{2^{2}+1^{2}+3^{2}}$. $\sqrt{1^{2}+1_{4}^{2}+5^{2}}$	
-	JIL JLZ	
	N - N	
_	0 = 68.2	

		e e	S C - C - S
5i	x = 2 + 3 sin 0	y = 1-2a	030
	dr = 3 1050	dy = 2 si	nØ
	$\frac{dy}{dx} = \frac{d0}{dx} \times \frac{dy}{d0} = \frac{1}{2}$	2 sin0 3cos0	: 2 ton 0
	1 · 2 han 0		
	ton 0 : 3		
	0 : 0.6435	(19 -3)	
5	x: 2+3sin0	y = 1-2	65O
	$\sin^2\theta = \left(\frac{x-2}{3}\right)^2$	w50 ·	$\left(\frac{1-y}{a}\right)^2$
	$\frac{1}{9} = \frac{(x-2)^2}{4} + \frac{(1-4)^2}{4}$		
	4x2 + 9y2 - 16x - 18y - 11	÷ D	

6 1/2 Lx-1 dx	u: 2x+1
$(2x+1)^5$	x: u-1
	2
	dx : 1 du
_2	2
1 2u-3 du	x 1/2 0
2 J. us	11 2 1
2	2u: Lex + 2
= 1 \ 2u - 3u - du	2u-3 = 4x-1
2),	
$\frac{1}{2} \left[\frac{2}{3} u^{-3} + \frac{3}{4} u^{-4} \right]$	
2 [3 4	
F 2 = -7/192	F [1] = 1/12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 23
2 192 12	384
-: 23	
384	

$\frac{7}{1} = \ln(1 + \sin x) - \ln(\cos x)$
$\frac{\cos x}{1+\sin x} + \frac{\sin x}{\cos x}$
$\frac{\cos^2 x + \sin x + \sin^2 x}{(1 + \sin x)\cos x}$
1 + sinx
(1+ sinx) cosx = secx
$7ii$, $\int_{0}^{\pi/3} \sec x dx = \left[\ln(1+\sin x) - \ln(\cos x)\right]_{0}^{\pi/3}$
$F["/3] = ln(1+\sqrt[3]{2}) - ln(1/2)$ $F[o] = 0$
$\int -\ln\left(1+\sqrt{3}\right) - \ln\left(\frac{1}{2}\right)$
$= \ln \left(2+\sqrt{3}\right)$

2	
	8: A(3,2,1) B(5,4,-3) C(3,17,-4) D(1,6,3
	AB = (3-5)2+(2-4)2+(13)2 = 124
	$ A1\rangle $: $\sqrt{(3-1)^2 + (2-6)^2 + (1-3)^2}$: $\sqrt{24}$
	8 md BD = (3,5,0) = x
	$\vec{A} \times \vec{a} = \begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix}$
	$\frac{r}{2} + \frac{\lambda}{3} + \frac{\lambda}{3}$
	8::: 3 = 3 + 0 17 : 2+3> > = 5 -4 = 1 - >
	i. C is on the line
	8.v. Kite

9: d0 = -k(0+20)
1 do = [-k dt
0+20
ln 0+20 = -kt + c
A -kt
0 + 20 = Ae Re Per - 20
0 = Ae - 20
9; t=0 0 = 40 , -3
dt
-3 - k(40 + 20) = k = 1
$0 = A e^{-\frac{1}{2}\epsilon} - 20$
O = A e 20 - 20
L=0 0:40 => 40 = A-20 => A=60
0:60e -20
- 1/2×E
60e = 20
-1/20t = 1/3
t = -20 ln (1/3) = 22 minutes
9: K is larger.

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

10: $x^2 - 1$ $x^2 - x - 6 \int x^3 - 2x^2 - 4x + 13$
2 -
$\frac{x^3 - x^2 - 6x}{-x^2 + 2x + 13}$
2
$\frac{-x + x + 6}{x + 7}$
3 + 1
$ 0 $ $\int_{-\infty}^{\infty} \frac{x^3 - 2x^2 - 4x + 13}{x^2 - 4x + 13} dx = \int_{-\infty}^{\infty} \frac{x^3 - 1 + x + 3}{x^2 - 4x + 13} dx$
$\int_{u}^{2} x^{2} - x - 6$
x+7 . A . B
x²-x-6 x-3 x+2
x + 7 : A(x + 2) + B(x - 3)
x:3 => 10:5A; A:2
x = -2 = 7 = 5 = -56 = 6 = -1
$\int x - 1 + 2 - 1 dx$
x-3 x+2
= 1 2 × 100 1 2 2
$\frac{1}{2} x^{2} - x + 2 \ln x-3 - \ln x+2 $
d u
F[6] = 12 + 2 ln 3 - ln 8
F[6] = 12 + 2 ln 3 - ln 8
F[4] = 4 + 22n1 - ln6
UI b
8 + ln9 - ln8 + ln6
0 2011 2010 4 20 6
$8 \perp \ln\left(\frac{9}{8}\right) + \ln 6$
8 + ln (27)